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Strong First-Order Electroweak Phase Transitions:

A Reassessment of the Sphaleron Decoupling Criterion In two Models with

Extended Scalar Sectors

Electroweak baryogenesis builds on the premise of a strong first-order electroweak
phase transition, which is realized when the temperature T at its onset and the
corresponding temperature-dependent Higgs vacuum expectation value v(T ) satisfy
v(T )/T & 1.0 according to a standard working criterion. This thesis reassesses the
reliability of the criterion in two models with extended scalar sectors: the Inert
Doublet Model and a real scalar singlet extension of the Standard Model. The focus
lies in a reevaluation of the dominant temperature- and model-dependent effects of
the electroweak sphaleron, which underlie the criterion and determine the order of
magnitude of the condition. Furthermore, the widely neglected subtlety of successful
bubble nucleation is addressed. Its implications are comprehensively studied in the
Inert Doublet Model and generally accounted for in both models – for which recent
phenomenological constraints are taken into consideration – by evaluating the phase
transition strength at the nucleation temperature. Ultimately, the effects of the new
physics and the chosen temperature scheme on the criterion are found to be modest,
with the respective analyses of the models both suggesting an updated criterion
v(T )/T & (1.05 – 1.30) that agrees well with the most generous state-of-the-art
estimates.

Starke Elektroschwache Phasenübergänge Erster Ordnung:

Eine Neubewertung des Sphaleron-Entkopplungskriteriums in zwei

Modellen mit erweiterten Skalarsektoren

Elektroschwache Baryogenese baut auf der Prämisse eines starken elektroschwachen
Phasenübergangs erster Ordnung auf, der gemäß eines Standardkriteriums dann
realisiert wird, wenn die Übergangstemperatur T und der entsprechende temper-
aturabhängige Higgs-Vakuumerwartungswert v(T ) die Bedingung v(T )/T & 1.0
erfüllen. In dieser Arbeit wird die Zuverlässigkeit des Kriteriums in zwei Mod-
ellen mit erweiterten Skalarsektoren neu bewertet: dem Inert-Doublet-Modell und
einer realen skalaren Singulett-Erweiterung des Standardmodells. Der Schwerpunkt
liegt in einer Neubeurteilung der dominanten temperatur- und modellabhängigen
Effekte des elektroschwachen Sphalerons, welche dem Kriterium letztendlich zu-
grunde liegen und die Größenordnung der Bedingung festlegen. Außerdem wird die
weithin vernachlässigte Feinheit der erfolgreichen Blasennukleation angerissen. Ihre
Auswirkungen werden im Inert-Doublet-Modell umfassend untersucht und in beiden
Modellen – hinsichtlich neuester phänomenologischer Einschränkungen aufgestellt –
allgemein berücksichtigt, indem die Phasenübergangsstärke bei der Nukleationstem-
peratur ausgewertet wird. Letztendlich gelten die Auswirkungen der neuen Physik
und des gewählten Temperaturschemas auf das Kriterium als bescheiden: die jew-
eiligen Analysen der Modelle schlagen ein angepasstes Kriterium v(T )/T & (1.05
– 1.30) vor, welches gut mit den großzügigsten aktuellen Abschätzungen überein-
stimmt.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Over the past fifty years, the Standard Model (SM) of particle physics has succeeded

in providing a comprehensive framework within which to explore the fundamental

interactions that shape our universe. And yet, despite its many successes, the sheer

variety of its shortcomings cannot be overstated [1–13]. One subtle and yet deci-

sive flaw concerns baryonic matter, which the SM presumes to describe well. While

the theory provides a sound account of baryonic matter largely backed up by ex-

perimental evidence, nothing in its structure suggests a prevalence of baryons over

antibaryons or vice versa [14–16]. This notion becomes untenable in the light of

present evidence, which suggests an excess of matter over antimatter [17–22]. The

baryon asymmetry of the universe (BAU) thus fundamentally calls into question the

prowess of the SM.

The BAU becomes all the more puzzling when confronted to our present under-

standing of cosmology, which quickly rules out the simplest explanations. Accounts

of a universe subdivided into matter- and antimatter-dominated regions are short-

lived: they are as entropically far-fetched as they are lacking in experimental evi-

dence [17, 23–26]. Neither can the baryon asymmetry be rationalized as an initial

condition, as standard inflation calls for a dilution of such relic asymmetries [27].

Fine-tuning issues are particularly acute in the most optimistic cases and thereby

become no-go scenarios in the present scientific paradigm [28, 29]. Having virtually

excluded the present BAU as a remnant of the pre-inflation era, its generation by

means of dynamic processes – i.e. baryogenesis – faces the best odds.

While baryogenesis has seen very diverse implementations over the past decades

(see e.g. Ref. [30] for a compilation), its success necessarily rests on common ground

provided by the so-called Sakharov conditions [31–35]. A process that prompts

baryogenesis needs (i) to violate baryon number, (ii) to occur off thermodynamical

3



equilibrium and (iii) to account for sufficient violation of the C and CP symmetries.

Whereas each of these poses a significant strain, the call for baryon number violation

faces a very particular challenge: any model of baryogenesis needs to accommodate

the present-day stability of the proton1, an observation at odds with the violation

of baryon number [38–43]. Furthermore, the scale disparity inherent to tests of

baryogenesis threatens a final coup de grâce to many theories, as their testability

requires to correlate a process of cosmic scale to a set of accessible and measurable

parameters [44, 45].

A candidate mechanism which thrives in these apparent contradictions is elec-

troweak baryogenesis (EWBG) [45–53]. At its heart, EWBG takes advantage of an

established instance of symmetry breaking – namely electroweak symmetry break-

ing (EWSB) – in order to source the baryonic asymmetry. In its conception, the

mechanism is thus deeply rooted in SM electroweak (EW) phenomenology. The

greatest merit of EWBG lies in how it reconciles baryon number violation in the

early universe with the present-day stability of matter. Its cornerstone is the EW

sphaleron: a non-perturbative anomalous process predicted by the SM which is be-

lieved to have been enhanced before EWSB, yet to be largely suppressed in this day

and age [54–56].

Despite its virtues, EWBG faces a number of well-known implementational draw-

backs. While the SM provides a solid framework for the mechanism, the numbers

do not add up. In particular, it has been noted that CP violation in the SM is too

scarce to account for the observed baryon asymmetry [30, 57–60]. Furthermore, it

has been settled that the off-equilibrium property required for EWBG – a strong

first-order phase transition (SFOPhT) in the EW sector at EWSB – cannot be satis-

fied within the standard picture [30, 61–65]. Such deficiencies are complemented by

the practical impossibility of sphaleron processes at present or foreseeable colliders

[66]. Altogether, the study of EWBG is thus set ab initio on a path beyond the

present theoretical and experimental state of the art.

A large class of scenarios beyond the Standard Model (BSM) features exten-

sions of the SM Higgs sector. Such extensions, often consisting in additional Higgs

1The stability of matter suggests baryon number conservation. As Ref. [36] points out, the

notion of baryon number conservation can be traced back to to E. C. G. Stueckelberg [37].
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CHAPTER 1. INTRODUCTION

doublets or new singlet scalars altogether, are known to possess non-trivial phase

transition behaviours on account of the broadened field content. When these effects

are considered, it is possible to alleviate the constraints on the standard Higgs sector

which otherwise hinder the viability of a SFOPhT. As high energy theory persists

in its supply of viable candidates for EWBG, phenomenological research continues

to tie in with experimental advances. The advent of gravitational wave detection

has rendered the study of cosmic-calibre phenomena more accessible than ever be-

fore, thus uncovering virgin ground for cosmic archaeology [67–72]. As a defining

event in the history of the universe, the EWPhT is expected to have left imprints

on the gravitational wave spectrum, its signature very much defined by the type

and strength of the phase transition and the underlying field content of the theory.

The prospects of tangible insights into one of the premises of EWBG, in addition

to the present climate of theoretical high energy physics, greatly foster the study of

the mechanism in extensions of the SM.

In the context of EWBG, a widely employed criterion classifies the EWPhT as

strong when the approximate inequality vpt/Tpt & 1 holds, with both the vacuum

expectation value of the Higgs field vpt and the temperature Tpt evaluated at the

moment of the phase transition [27, 47, 73–75]. This thesis sets out to revisit and

dissect the reliability of this condition in two BSM extensions of the Higgs sector:

the Inert Doublet Model (IDM) and a canonical real scalar singlet extension (rSM).

To this aim, the following itinerary is proposed:

• Part I covers a largely self-contained theoretical build-up to EWBG. Chapters

2 – 6 present a general review of the context, the relevant tools and selected

ingredients of EWBG. Chapter 7 unifies these processes into the mechanism

of EWBG and justifies the requirement for a SFOPhT.

• Part II specifies the theoretical methods and numerical procedures on which

the subsequent analyses rest.

• Part III builds the IDM and the rSM in view of up-to-date experimental limits

and goes on to explore the viability of SFOPhTs therein. The emphasis is

placed on the reassessment of the condition vpt/Tpt & 1.
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Chapter 2

Electroweak theory in the SM

Electroweak (EW) theory is the unified description of processes pertaining to the

weak and electromagnetic interactions. In the SM, the mathematical groundwork

for this description is provided by the Glashow-Weinberg-Salam (GWS) model [76–

78]. The centerpiece of the GWS theory is the gauge group SU(2)L×U(1)Y . Gauge

invariance of a theory with fermions ψ under this group induces the existence of

four gauge fields: one field Bµ arising from the U(1) gauge symmetry under which

the particles carry a weak hypercharge Y and three fields W a
µ (a ∈ {1, 2, 3}) emerg-

ing from a SU(2) gauge symmetry under which only the left-handed particles are

charged. The model is completed by a complex SU(2)L Higgs doublet Φ,

Φ
def
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (2.1)

The Lagrangian of EW theory is given by

LEW
def
= Lkin + LYuk − V (Φ) . (2.2)

Lkin represents the kinetic terms of the theory1,

Lkin
def
= −1

4
W a

µνW
aµν − 1

4
BµνB

µν + (DµΦ)
†(DµΦ) +

∑
j

i ψ̄jγ
µDµψj . (2.3)

The gauge field terms in Eq. (2.3) follow the conventional definitions of the fields

and the field strength tensors (see e.g. Ref. [79]),

Wµ
def
=

1

2
σaW a

µ (2.4)

Bµν
def
= ∂µBν − ∂νBµ (2.5)

W a
µν

def
= ∂µW

a
ν − ∂νW

a
µ + g2ε

abcW b
µW

c
ν , (2.6)

1ψ̄j
def
= ψ†

jγ
0.
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CHAPTER 2. ELECTROWEAK THEORY IN THE SM

with the Pauli matrices σa (Appendix A). The sum over j covers all fermions in the

theory. EW theory distinguishes between so-called left- and right-handed fermions.

These have different transformation properties under the gauge group. Left-handed

leptons and quarks may transform as SU(2) doublets expressed as

li
def
=

(
νiL
eiL

)
, qi def

=

(
uiL
diL

)
, (2.7)

with i denoting the fermion generation, i ∈ {1, 2, 3}. Their right-handed counter-

parts2

eiR, u
i
R, d

i
R (2.8)

instead transform as singlets under SU(2) and decouple altogether from its gauge

bosons. The EW covariant derivative acting on the Higgs doublet and the left-

handed fermion fields is

Dµ
def
= ∂µ − ig1Y Bµ − ig2W a

µ τ
a , (2.9)

with the generators τa corresponding to normalized Pauli matrices, τa = σa/2, the

gauge couplings parameters g1 and g2, and Y denoting the weak hypercharge of the

object acted upon. The right-handed particles instead have

Dµ
def
= ∂µ − ig1Y Bµ . (2.10)

In the fermionic term of Eq. (2.3), the derivatives are contracted with the Dirac

matrices γµ.

LYuk accounts for the Yukawa interactions between the Higgs doublet and the

fermions. It contains on the one hand the leptonic contribution

Ll
Yuk

def
= −

(
yli l̄

iΦeiR + h.c.
)
, (2.11)

which features the leptonic Yukawa couplings yli. On the other hand, similar Yukawa

terms are introduced for the quark sector. In the so-called flavor basis, these are

Lq
Yuk

def
= −

(
Y d
ij q̄

iΦdjR + Y u
ij q̄

iΦ̃ujR + h.c.
)
, (2.12)

where Φ̃
def
= iσ2Φ. The coupling structure is encoded in two non-diagonal Yukawa

matrices Y d
ij and Y u

ij [80]. Finally, the Lagrangian also features the Higgs potential

V (Φ)
def
= −µ2Φ†Φ + λ(Φ†Φ)2 . (2.13)

2The SM does not include right-handed neutrinos νiR by construction.
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Gauge symmetry under the group SU(2)L × U(1)Y characterizes the EW La-

grangian as invariant under the concatenation of certain local U(1) and SU(2)

transformations (see e.g. Refs. [79–81] and Appendix A). The structure of the co-

variant derivative (2.9) is taylored to enforce the general gauge invariance of LEW

under these transformations. Nonetheless, the GWS model crucially accounts for

an instance of spontaneous symmetry breaking (SSB), whereby the initial symmetry

group is reduced to a subset thereof at the vacuum, i.e. SU(2)L×U(1)Y → U(1)em.

This so-called Higgs mechanism [82–84] is realized by the spontaneous acquisition

of a non-zero vacuum expectation value (VEV) 〈Φ〉 = v/
√
2 by the Higgs doublet.

In the phase of broken EW symmetry3, the doublet is conventionally represented in

a basis such that

Φ =
1√
2

(
0

v + h

)
, (2.14)

featuring an excitation with respect to the VEV v – the Higgs boson h. The ground

state of the Lagrangian in Eq. (2.2) only remains invariant under transformations

generated by the linear combination Q = τ 3 + Y , Q being the generator of the

U(1)em symmetry responsible for electromagnetic interactions. Its gauge field is the

photon.

After symmetry breaking, the kinetic terms of the Higgs doublet give rise to

Lkin ⊃ 1

2

(
0 v

)(1

2
g1Bµ + g2W

a
µ τ

a

)(
1

2
g1B

µ + g2W
b,µτ b

)(
0
v

)
=

1

2

v2

4

(
g22(W

1
µ)

2 + g22(W
2
µ)

2 + (−g2W 3
µ + g1Bµ)

2
)
. (2.15)

Recasting the gauge fields in a convenient diagonal basis such that

W±
µ

def
=

1√
2
(W 1

µ ∓ iW 2
µ) (2.16)

Zµ
def
=

1√
g21 + g22

(g2W
3
µ − g1Bµ) (2.17)

Aµ
def
=

1√
g21 + g22

(g1W
3
µ + g2Bµ) (2.18)

permits to identify the expressions in Eq. (2.15) as gauge field mass terms4 (Ap-

pendix A)

mW± = g2
v

2
, mZ =

√
g21 + g22

v

2
, mγ = 0 . (2.19)

3And in unitary gauge (ξ = 0).
4The photon will be referred to as γ despite the gauge field appearing as Aµ.
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CHAPTER 2. ELECTROWEAK THEORY IN THE SM

The two neutral fields Aµ and Zµ are related to Bµ and W 3
µ by(

Aµ

Zµ

)
=

(
cos θW sin θW

−sin θW cos θW

)(
Bµ

W 3
µ

)
. (2.20)

The mixing of Bµ and W 3
µ is determined by the Weinberg angle θW . Its value can

be captured by the relation [85]

cos θW =
mW±

mZ

. (2.21)

The Higgs mechanism also grants mass terms to the fermions. Symmetry breaking

renders the leptonic Yukawa term

Ll
Yuk

SSB→ − yli√
2
(v + h)(l̄ieiR + h.c.) (2.22)

such that the charged lepton acquires a mass

mei =
yli√
2
v . (2.23)

In the quark sector, a convenient mass basis allows to diagonalize the Yukawa matri-

ces into appropriate matricesMd andMu for the down- and up-type quaks, with the

respective diagonal components yd,ui for i ∈ {1, 2, 3}. Under the Higgs mechanism,

Eq. (2.12) becomes

Lq
Yuk

SSB→ −(v + h)

(
ydi√
2
d̄
′i
Ld

′i
R +

yui√
2
ū

′i
Lu

′i
R + h.c.

)
(2.24)

with the mass terms

md,u
i =

yd,ui√
2
v (2.25)

and the apostrophes denoting the quark fields in the mass basis. The misalignment of

the mass and flavor states is quantified by the complex unitary Cabibbo-Kobayashi-

Maskawa (CKM) matrix [86, 87]. The irreducible complex phase in this matrix is

an experimentally verified source of CP violation in the SM [88–90].

Finally, the Higgs boson mass arises from the curvature of the potential (2.13) at

its minimum as

mh =
√
2λv . (2.26)
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Chapter 3

Quantum field theory essentials

Much of the physics in Lagrangians like Eq. (2.2) is hidden in certain parameter

relations. For example, in a φ4-theory with spontaneous symmetry breaking as

encountered in Eq. (2.13), the parameter relations at the potential minimum φmin

define the mass of the field. The significance of the potential minimum is somewhat

more general in that it classically marks a minimum of the Minkowski action

SM [φ]
def
=

∫
d4xL(φ) . (3.1)

This classical action sources the physics of a quantum field theory (QFT). An elegant

way in which the physics can be invoked is provided by the path integral formulation

of QFT. It rests on so-called grand canonical partition functions [91]

Z[J ]
def
=

∫
Dφ exp

[
i

(
SM [φ] +

∫
d4x J(x)φ(x)

)]
(3.2)

where Dφ is the path integral measure and J(x) an external current. Z[J ] is also ap-

propriately known as the generating functional of correlation functions: n functional

derivatives of Eq. (3.2) with respect to J(x) generate n-point correlation functions

G(n) like the propagator (n = 2). This motivates the suggestive reexpression of Z[J ]

as [91]

Z[J ] =
∞∑
n=0

in

n!

∫
d4x1... d

4xn J (x1) ... J (xn)G(n) (x1, ..., xn) . (3.3)

A perturbative diagrammatic expansion of Z[J ] allows to recover the physics of the

system in terms of Feynman diagrams.

Corrections induced by loop diagrams will tend to complicate simple tree-level

parameter relations at minima of SM . Hereby, the procedure of tying physical

observables like the mass to critical points in the action becomes somewhat patho-

logical. A mathematical remedy to the ills of the classical action becomes necessary;

10



CHAPTER 3. QUANTUM FIELD THEORY ESSENTIALS

going even further, perhaps a surrogate object altogether that allows to “read off”,

for example, the vacuum state of the full, loop-corrected theory. The quantum effec-

tive action and the corresponding effective potential are precisely such objects and

their importance to studies of SSB shall be motivated in this chapter for later use.

This will simultaneously serve to settle basic concepts and conventions in QFT and

finite-temperature field theory (FTFT) assumed throughout the rest of this work.

For most of the physically meaningful purposes, only a subset of the graphs

generated by Z[J ] is of interest – the so called connected diagrams. A tool that

systematically removes disconnected graphs from the picture is the generating func-

tional W [J ] of connected n-point functions. Such a generating functional can be

defined via

Z[J ] = exp
(
iW [J ]

)
⇐⇒ W [J ]

def
= −i log(Z[J ]) . (3.4)

In analogy to the formalism for Z, connected n-point correlation functions Gc
(n)

will emerge from n-th functional derivatives with respect to J(x). Thus, W [J ] also

admits the suggestive expression [91]

iW [J ] =
∞∑
n=0

in

n!

∫
d4x1... d

4xn J (x1) ... J (xn)G
c
(n) (x1, ..., xn) . (3.5)

The physics of connected diagrams is ultimately sourced by the so-called quantum

effective action ΓM , akin to SM in Eq. (3.1) in the classical formalism. ΓM is obtained

from W [J ] via Legendre transformation to a suitable field coordinate defined as

φ̄(x)
def
=
δW [J ]

δJ(x)
. (3.6)

φ̄ is a background or mean field which averages over quantum fluctuation effects. In

terms of φ̄, the effective action is formally given by [91]

ΓM [φ̄]
def
= W [J ]−

∫
d4x φ̄(x)J(x) . (3.7)

The definition in Eq. (3.7) possesses a number of interesting properties. First of all,

it suggests the quantum field equation

δΓM [φ̄]

δφ̄(x)
= −J(x) . (3.8)

For vanishing external currents J(x), Eq. (3.8) identifies critical points of the action

of the full, loop-corrected theory such as the vacuum state φ̄min. This was the

11



primary motivation in introducing the effective action formalism. It is stressed that

fields φ̄ = φ̄(x) which satisfy Eq. (3.8) in a translationally invariant theory will not

depend on x, i.e. they are to be understood as constant background fields. A second

property is suggested by an expansion of ΓM as [91]

ΓM [φ̄] =
∞∑
n=0

1

n!

∫
d4x1... d

4xn φ̄(x1)... φ̄(xn) Γ
(n)
M (x1, ..., xn) . (3.9)

The Γ
(n)
M are one-particle irreducible (1PI) correlation functions and formally rep-

resent effective n-point vertices that take into account all possible quantum (loop)

corrections. Eqs. (3.8) and (3.9) thus lay bare the full power of the effective action

formalism: it serves to sweep into the vertices all of the quantum loop effects of a

theory. In so doing, it confines many of the crucial physical aspects to a localized

object of study, the effective potential.

The effective potential is paramount to model-building, as Parts II and III will

showcase. The interactions it encodes are what define the physics of a QFT aside

from the pertinent gauge symmetries of the model. Assuming a translation- and

Lorentz-invariant theory, the effective potential can be interpreted as the surviving

term in [91]

ΓM [φ̄] =

∫
d4x

(
Lkin(φ̄)− Veff(φ̄)

)
= −

∫
d4xVeff(φ̄) . (3.10)

In the last equality, the constancy of the fields cancels the kinetic derivative terms.

Furthermore, it reduces the integral of Eq. (3.10) to a space-time volume factor and

renders the expression [79]

ΓM [φ̄] = −(V · T )Veff(φ̄) . (3.11)

Eq. (3.11) shows that the formalism reconciles the critical points of ΓM and Veff. In

particular, at the minima one recovers

∂

∂φ̄
ΓM [φ̄]

∣∣∣∣
φ̄=φ̄min

=
∂

∂φ̄
Veff(φ̄)

∣∣∣∣
φ̄=φ̄min

= 0 . (3.12)

The last equation indicates SSB for φ̄min 6= 0.

The availability of an expansion for ΓM in Eq. (3.9) and the close relation between

ΓM and Veff in Eq. (3.10) suggest a convenient expansion of Veff itself. Indeed, in

12



CHAPTER 3. QUANTUM FIELD THEORY ESSENTIALS

momentum space, under the previous assumptions on the fields and the space-time

symmetries, an effective potential can be expressed as [91]

Veff
(
φ̄
)
= −

∞∑
n=0

φ̄n

n!
Γ
(n)
M (pi = 0) , (3.13)

thus as sum of effective vertices with vanishing external momenta pi. In order to

calculate an effective potential to loop order m, each effective vertex Γ
(n)
M needs to

account for the possible 1PI diagrams with vanishing external momenta and up to

m loops. At zero-loop order, the fundamental tree-level potential Vtree of a theory is

recovered. Following Eq. (3.13), the one-loop contribution is obtained when the Γ(n)
M

account for all appropriate diagrams with up to one loop. This prescription results

in the one-loop effective potential [91]

Veff(φ̄) = Vtree(φ̄) + VCW(φ̄) , (3.14)

with VCW(φ̄) signifying the Coleman-Weinberg (CW) potential brought about by

the one-loop corrections [92]. Radiative corrections such as the ones accounted for

by the CW potential are known sources of SSB and hence need to be tracked when

a model is set up. Chapter 8 will provide the necessary details to tackle the model

setup in Chapters 10 and 11.

The path integral formulation of field theories followed throughout this chapter

greatly lives off its analogy to statistical mechanics and thermodynamics. This anal-

ogy reflects, for example, in the extensive character of the effective action displayed

in Eq. (3.11) [79]. The analogy has motivated the so-called Euclidean formulation of

field theories typically encountered in1 the study of phase transitions and nucleation

theory, which shall be addressed in Chapter 6. The Euclidean formulation relies on

a so-called Wick rotation of the temporal coordinate, i.e. τ def
= −it. Under its effect,

the fundamental quantity SM is redefined into its Euclidean version [93, 94]

SE[φ] = −iSM [φ] =

∫
dτ

∫
d3xL(φ) . (3.15)

This change then permeates the entire effective action formalism. In particular, it is

noted for later purposes that the effective potential will be related to the Euclidean

effective action ΓE = −iΓM as [95]

ΓE[φ̄] =

∫
dτ

∫
d3xVeff(φ̄) . (3.16)

1But of general applicability.

13



This reformulation of field theory owes its name to the Euclidean space-time struc-

ture recovered under the Wick rotation. All space-time dimensions are thus widely

treated on an equal footing, especially so in zero-temperature QFT. However, FTFT

usually exploits this formulation in order to stress the analogy to thermodynamics

and reinterpret many quantities as thermal averages. In Minkowski space-time,

FTFT applications typically compactify the temporal variable to t ∈ [0,−iβ], with

the inverse temperature β = T−1; the Euclidean formalism instead utilizes the less

cumbersome τ ∈ [0, β].

FTFT lends itself to an effective action formalism as outlined for the zero-

temperature case. Besides introducing the pertinent thermal contributions to the

potential, it generalizes the property (3.12) to thermal systems. Bridging the con-

ceptual gaps in a sufficiently subtle re-derivation is beyond the scope of this work2.

However, thermal effects will play a crucial role in future chapters and need to be

acknowledged at this point. At high temperatures, such effects can restore symme-

tries that appear spontaneously broken at low temperatures [97–100]. That is, a

certain symmetry is regained when thermal effects overpower the effective potential

(3.14) at zero temperature. Models presenting this behavior thus possess distinct

symmetry phases between which they transition. In the SM, the EW sector is char-

acterized by such a phase transition. Its exact nature is crucial to the viability of

EWBG and will be addressed in Chapters 6 and 7. Implementational details of the

CW and thermal effective potentials necessary to Part III are postponed until Chap-

ter 8, and the corresponding finite-temperature Feynman rules can be retrieved in

Appendix B. Finally, a point regarding notation: for the sake of clarity throughout

the equations, background fields will not be distinguished graphically as φ̄ beyond

this chapter.

2Readers are referred to Refs. [91, 95, 96] for excellent introductions to FTFT.
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CHAPTER 4. BARYON NUMBER VIOLATION AND YANG-MILLS VACUA

Chapter 4

Baryon number violation and Yang-

Mills vacua

4.1 Violation of baryon number conservation in

the SM

One of the fundamental requirements for baryogenesis is the violation of baryon

number conservation – a condition the SM may seem at odds with: no perturbative

process conceivable within the theory seems to violate this apparent conservation

law. As baryon number violating events – such as proton decay – have yet to be

observed, the experimental status quo is all but encouraging [38–43]. However, it

turns out the SM possesses the tools to accommodate for baryon number violation

via so-called anomalies. Anomalies manifest when symmetries of a Lagrangian are

not shared by the functional measure of the theory. As a result, classical Noether

conservation of certain currents may be violated at quantum level. A prime example

is the Adler-Bell-Jackiw (ABJ) anomaly, which features the violation of the chiral

current in a U(1) theory with chiral fermions and is related to the non-zero amplitude

of certain triangle diagrams [101, 102].

Crucially, anomalies permeate the EW sector of the SM. The so-called (B + L)

anomaly is the keystone to EWBG [103]. As the name suggests, it provides a

pathway for the non-conservation of the joint baryon-lepton number (B+L) and thus

a backdoor to baryon number violation. A very general method for its evaluation

is provided by the path integral approach [104, 105]. The starting point is the

generating functional [30]

Z =

∫
DΨDΨ̄ ei

∫
d4xLEW =

∫
DΨDΨ̄ eiS , (4.1)
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4.1. Violation of baryon number conservation in the SM

with the EW Lagrangian introduced in Chapter 2. A first inspection of the covariant

derivative structure in LEW reveals the existence of baryonic and leptonic currents1,

Jµ
B =

∑
q

1

3
q̄γµq (4.2)

Jµ
L =

∑
l

(l̄γµl + ν̄lγ
µνl) . (4.3)

They emerge as classical Noether currents of global field transformations of the

fermions,

Ψ(x) → ei(a+bγ5)θ Ψ(x) (4.4)

Ψ̄(x) → Ψ̄(x) ei(a+bγ5)θ , (4.5)

with {a = 1
3
, b = 0} corresponding to a baryon number rotation and {a = 1, b = 0},

to a lepton number rotation. Under these transformations, the generating func-

tional (4.1) remains invariant. The physical manifestation of these symmetries is

the apparent conservation of B and L.

Despite their solid grounding, these conservation laws break down beyond the

classical setting [106]. Interesting quantum effects can be captured by treating the

parameter θ in Eqs. (4.4) and (4.5) as a local quantity,

Ψ(x) → ei(a+bγ5)θ(x) Ψ(x) (4.6)

Ψ̄(x) → Ψ̄(x) ei(a+bγ5)θ(x) . (4.7)

By virtue of the equivalence theorem of QFTs, physics needs to remain invariant un-

der such field redefinitions [107–109]; thus, no new result is expected. And yet, this

change is deceptively innocent: under the new prescription, not only the Lagrangian

but also the functional measure changes – and it does so in a non-trivial way. On

account of the ABJ anomaly, the chiral components of the new transformations do

not correspond to symmetries of the functional measure, rendering the Jacobian of

the transformation non-trivial. Specifically, the transformed generating functional

Z ′ =

∫
DΨ′DΨ̄′eiS′

=

∫
DΨDΨ̄eSjacei(S+δS) (4.8)

1Here the quark Dirac fields are denoted by q, q̄. Those of the charged leptons go by l and l̄;

those of neutrinos, by νl and ν̄l.
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CHAPTER 4. BARYON NUMBER VIOLATION AND YANG-MILLS VACUA

features the new contributions [30, 75]

δS = −
∫

d4x

[
Ψ̄(x)m (e2ibγ5θ(x) − 1)Ψ(x) + Ψ̄(x)γµ(a+ bγ5)Ψ(x) ∂µθ(x)

]
(4.9)

and

Sjac = i
∫

d4x θ(x)

[
(a− b)

8π2
Tr
[
F (L)µνF̃ (L)

µν

]
− (a+ b)

8π2
Tr
[
F (R)µνF̃ (R)

µν

]]
. (4.10)

Here, m is the nominal fermion mass; F (L)µν and F (R)µν are the generic field

strengths coupling to left- and right-handed currents (i.e. {W µν , Bµν} and Bµν ,

respectively), and F̃µν = 1
2
εµνρσF

σρ defines the dual field strength tensors. Partial

integration of Eq. (4.9) removes any dependence on ∂µθ(x) and, on the whole, the

invariance condition for the generating functional can be made independent of θ(x)

[30]:

∂µ
[
Ψ̄(x)γµ (a+ bγ5)Ψ(x)

] !
= −2 i bmΨ̄(x)γ5Ψ(x)

− i
(a− b)

8π2
Tr
[
F (L)µνF̃ (L)

µν

]
+ i

(a+ b)

8π2
Tr
[
F (R)µνF̃ (R)

µν

]
.

(4.11)

For the tuples {a, b} introduced earlier, the left-hand side of Eq. (4.11) gives the

baryonic and leptonic current divergences ∂µJµ
B and ∂µJ

µ
L. The right-hand side,

however, only vanishes if a = b = 0. Therefore, the generating functional cannot be

invariant under Eqs. (4.6) and (4.7) and the current divergences must be distinct

from zero. In fact, it can be shown that [75]

∂µJ
µ
B = i

NF

32π2
(−g22W aµνW̃ a

µν + g21B
µνB̃µν) (4.12)

∂µJ
µ
L = i

NF

32π2
(−g22W aµνW̃ a

µν + g21B
µνB̃µν) , (4.13)

with NF the number of fermion families and the coupling and tensor conventions

of Chapter 2. The baryonic and leptonic currents are each not conserved – which

discards B and L as fundamentally conserved charges. Furthermore, it is noted that

the conservation of both charges is violated by the same quantity. Thus, it is natural

to consider the joint currents Jµ
B±L = Jµ

B ± Jµ
L. They behave as

∂µJ
µ
B+L = i

NF

16π2
(−g22W aµνW̃ a

µν + g21B
µνB̃µν) (4.14)

∂µJ
µ
B−L = 0 , (4.15)
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therefore suggesting the violation of (B+L) and the conservation of (B−L). Baryon

number violation ∆B is thus very much feasible within the SM and arises naturally

in processes where (B+L) is violated: since the baryon number can be decomposed

into orthogonal components as

B =
(B + L)

2
+

(B − L)

2
, (4.16)

the conservation of (B − L) implies

∆B =
∆(B + L)

2
. (4.17)

Any physical process able to couple to and violate the conservation of (B + L) will

in turn violate the conservation of B.

4.2 SU(2) and its vacuum structure

The results of the previous subsection are in fact not just a happy accident2 but

symptomatic of a profound misunderstanding. In order to emphasize the situation,

the baryonic divergence3 may be recast in terms of derivatives,

∂µJ
µ
B = i

NF

32π2
(−g22∂µKµ + g21∂µk

µ) , (4.18)

with the definitions [75]

kµ
def
= 2εµναβ(∂BαBβ) (4.19)

Kµ def
= 2εµναβ(∂νW

a
αW

a
β − 1

3
g2εabcW

a
νW

b
αW

c
β) . (4.20)

The quantities kµ and Kµ will be related to the vacuum structures of the U(1)

and SU(2) sectors, respectively. A typical treatment of Eq. (4.18) would involve a

redefinition of the current Jµ
B set out to cancel any boundary terms arising from the

integration of ∂µJµ
B. Thereby, Eq. (4.18) would vanish altogether and suggest the

conservation of B after all. While such a procedure is well-behaved for the term

∂µk
µ, it does not hold for the term ∂µK

µ, as the exotic vacuum structure of the

SU(2) sector renders its boundary contributions inherently non-trivial.
2As opposed to the “accidental symmetry” that the conservation of B would entail [110].
3And of course all other divergences derived in the previous subsection.
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A general feature of Yang-Mills theories is their rich vacuum topology as com-

pared to that of abelian theories [111–115]. A naive but natural guess as to the

Yang-Mills vacuum would be W vac
j (x) = 0, which causes the SU(2) kinetic terms

in Eq. (2.3) to vanish. However, in line with the gauge transformation behaviour

defined in Eq. (A.13), the nominal vacuum is not unique, and the family of pure

gauge images defined by

W vac
j (x) =

i
g2
U(x)∂jU

†(x) (4.21)

with SU(2) matrices U(x) features infinitely many degenerate ground states. These

states all seem a priori physically identical, merely differing in a perceived math-

ematical artifact. Similarly, one could think of a particle living on a circle with a

designated ground state, as in Fig. 4.1: after a full trajectory along the circle, the

particle lands on the same ground state [75, 114].

This notion of the Yang-Mills vacuum is fundamentally erroneous: different

classes of vacua can be identified which need to be treated as separate, distinguish-

able entities, akin to counting the integer-valued winding number of the particle on

the circle. To show this, the following discussion will be limited to the subset of

gauge transformations U(x) such that

U(x) → 1 as |x| → ∞ (4.22)

(or, more generally, some constant, unitary matrix as |x| → ∞ [114]). This condition

pursues one goal: it restricts the argument to vacuum states separated by finite

actions, which are the ones of interest4. In so doing, it compactifies the original

Figure 4.1: A particle living on a circle, with the ground state at the bottom. If the particle has
enough energy to perform a full rotation, it lands on a physically identical vacuum with a different
winding number. Adapted from Ref. [114].

4As transitions only happen between such vacua.
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coordinate space upon its projection5 onto SU(2) group space via U(x). As now both

R4 ∼ S3 and SU(2) ∼ S3, it follows that the functions U(x) represent mappings

U(x) : S3
dom → S3

range . (4.23)

Such mappings possess a very general property: they cover S3
range n-times upon one

closed loop over S3
dom. The number n of coverings or windings induces a natural

classification of the mappings into different topological, so-called homotopy classes.

Mappings U(x) within the same homotopy class are homotopically equivalent:

they can be continuously deformed into each other without changes to the funda-

mental properties of the object. In particular, the number of coverings n they induce

on S3
range – formally, the topological degree of the mapping – is left untouched [115].

n thus acts as a conserved topological charge; all Un(x) sharing the same charge

define one and the same ground state in Eq. (4.21). Gauge mappings in different

homotopy classes, however, will define topologically inequivalent ground states, i.e.

ground states associated to different charges n and m. Integers and integer charges

cannot be continuously transformed into each other. Therefore, if transitions be-

tween homotopically distinct vacua occur, they will sweep non-vacum configurations

on field space along the way [116]. This justifies the quasiperiodic vacuum structure

of Yang-Mills theories portrayed in Fig. 4.2. A slightly pedantic point is in order

which should help mantain formal clarity: one needs to distinguish between the

charge n of the object Un(x) – a gauge transformation acting on some state which

may be different from W vac
j (x) = 0, as per Eq. (A.13) – and the topological

charge of the vacuum state thereby defined via Eq. (4.21).

It is now possible to address the opening issue of this subsection. In Eq. (4.18),

the divergence of the baryonic current was rewritten in terms of two convenient

quantities, Kµ and kµ. These quantities are the so-called Chern-Simons currents

of the SU(2) and U(1) sectors and define the corresponding Chern-Simons (CS)

charges [75, 106]

NCS
def
=

g22
32π2

∫
d3xK0(x) (4.24)

nCS
def
=

g21
32π2

∫
d3x k0(x) . (4.25)

5U(x) : R4 → SU(2) group space. Furthermore, SU(2) ∼ S3 on account of the su(2) Lie algebra.
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-2 -1 1 20

∆B = +3∆B = −3

NCS

E(NCS)

Figure 4.2: Energy of the gauge field configuration as a function of NCS . Transitions between
the ground states bring about a change in the system’s charge NCS . The difference can be positive
or negative. Hence, the change in B is also sign-dependent. Adapted from Refs. [74, 114].

NCS reflects the topological charge of the Yang-Mills vacua: for each vacuum defined

by a class of mappings Un(x), Eq. (4.24) delivers the charge NCS = n. For a

transition between two vacua defined by the classes of mappings Un(x) and Um(x),

n 6= m, arises a change∆NCS = n−m. The latter cannot emerge in the topologically

trivial abelian case, i.e. ∆nCS = 0.

Defining the baryonic charge as

B
def
= i

∫
dt
∫

d3x ∂µJ
µ
B , (4.26)

one gathers from Eq. (4.18) that a transition between vacuum states in a finite time

interval ∆t = tf − ti results in a net violation of baryonic charge conservation by

∆B = i
∫ tf

ti

dt

∫
d3x ∂µJ

µ
B

=
NF

32π2

∫ tf

ti

dt

∫
d3x

(
g22∂µK

µ − g21∂µk
µ
)

(∗)
=

NF

32π2

[∫
d3x

(
g22K

0 − g21k
0
) ]∣∣∣∣∣

tf

ti

= NF ·
(
∆NCS −∆nCS

)
= NF ·∆NCS . (4.27)
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4.2. SU(2) and its vacuum structure

At (∗) it is assumed the calculation is carried out in a gauge such that the spa-

tial components Ki vanish at infinity; the non-triviality of the SU(2) vacuum is

thus swept into K0 altogether [116]. For transitions between adjacent minima and

assuming the SM fermion content, one obtains a violation of the baryon and lep-

ton numbers by three units, ∆B = ∆L = ±3. Thus, such transitions violate the

composite charge B + L by ∆(B + L) = ±6.

The last few pages should sufficiently motivate the interest in processes by which

such vacuum transitions take place: so far, they are the only known baryon number

violating processes within the mathematical architecture of the SM. Nonetheless, one

important question remains open – namely, the exact transition process. Naively,

two scenarios are possible. On the one hand, one should consider quantum tunneling

between the vacua of Fig. 4.2. These transitions correspond to so-called instanton

processes in the SU(2) EW sector, which have been widely investigated. With an

amplitude the order of 10−173, their suppression is manifest [103]. There also exists

the possibility of classical, thermally-aided trajectories over the barrier. Such is the

class of the sphaleron process which this work studies.
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CHAPTER 5. THE ELECTROWEAK SPHALERON

Chapter 5

The electroweak sphaleron

The sphaleron is a field configuration which catalyzes transitions between the topo-

logically distinct Yang-Mills ground states. In Fig. 4.2, it would correspond to half-

integer states and sit on top of the barrier. More precisely though, the sphaleron is

a saddle- point in field configuration space C (hence its name, Greek for “ready to

fall” [75]). It needs to be understood as the least-energy configuration interpolating

between vacuum states atop a multidimensional potential barrier, as represented by

Fig. 5.1.

NCS=1

NCS=0

vacuum

vacuum

Energy

configuration
space

Figure 5.1: The sphaleron configuration (red) corresponds to the lowest-energy mountain pass
between adjacent minimima in the Yang-Mills potential, quasiperiodic as a function of the Chern-
Simons number NCS [30, 117]. (Copyright ©Koichi Funakubo)
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Revealing the existence of saddle-points of the energy on C was the great achieve-

ment of Ref. [54]. At its core, the proof consists in showing that C is topologically

equivalent to a manifold M of non-zero genus (i.e. with holes, as in Fig. 5.2). This

follows from the existence of non-contractible loops of mappings on C and ties in

closely with the vacuum structure described in Chapter 4. Yang-Mills vacuum states

associated to different topological charges n and n′ are connected by trajectories on

C which topologically correspond to loops that wind the hole ∆n = |n − n′| times.

For ∆n = 1, there exist loops that correspond to transition trajectories between

adjacent ground states separated by the potential barrier, as depicted in Fig. 5.1.

The path of least action crosses the barrier along the lowest-energy mountain pass,

i.e. the static, lowest energy configuration atop the barrier. This configuration cor-

responds to the EW sphaleron. This section will outline its mathematical structure,

closely following the original construction in Ref. [54] as well as two more peda-

gogical reviews thereof in Refs. [115, 118]. Additional details can be inferred from

Appendix E.

M

Figure 5.2: Manifold M with a hole. In red, a non-contractible loop on M , i.e. a loop which
cannot not be homotopically contracted into a single point.
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CHAPTER 5. THE ELECTROWEAK SPHALERON

5.1 Sphaleron field configuration

The character of the SM EW sphaleron is governed by the standard Higgs doublet

Φ and the three SU(2) gauge fields W a
µ , whereas the fermion fields are largely

negligible. Furthermore, the initial discussion will be restricted to a pure SU(2)

sphaleron, whereby the mixing angle θW and therefore g1 are assumed to vanish.

Thus, the U(1)Y field Bµ decouples and can be set to zero for the present purposes,

as can the corresponding field strength tensor. Strictly speaking, this assumption

is justified a posteriori given the negligible effects induced by Bµ. At any rate, this

ansatz will be amended later on for the sake of completeness and in order to account

for the physical mixing angle. For now, the bosonic EW Lagrangian is truncated to

L = −1

4
W a

µνW
aµν + (DµΦ)

†(DµΦ)− V (Φ), (5.1)

with the tensor and covariant derivative structures introduced in Chapter 2. The

Higgs doublet is evaluated in unitary gauge and in the conventional basis that sees

Φ =
1√
2

(
0

h

)
, (5.2)

where h is the CP-even component that obtains a vacuum expectation value v in

the phase of broken EW symmetry. The SM tree-level Higgs potential introduced

in Eq. (2.13) and appearing in Eq. (5.1) can then be expressed as

V (Φ) = λ

(
Φ†Φ− 1

2
v2
)2

(5.3)

and the Lagrangian is fully characterized. This minimal approach to the EW

sphaleron defines the static energy functional [54]

E [W a
µ ,Φ]

def
=

∫
d3x

[
1

4
W a

ijW
aij + (DiΦ)

†(DiΦ) + V (Φ)

]
, (5.4)

with {a, i, j = 1, 2, 3}, on the infinite-dimensional manifold of field configuration

space C. While the functional (5.4) sets the stage, the prescription for a saddle-

point in configuration space is incomplete without a field ansatz. Ansätze usually

presuppose some degree of understanding of the fields, which in this case may not be

entirely intuitive. However, a first-principle reexamination of the theory will provide

a number of helpful insights [54, 115, 118].

25



5.1. Sphaleron field configuration

First of all, physicality of the sphaleron field configuration requires finiteness of

its energy. This is accomplished if the fields reach their known vacuum values at

spatial infinity. Secondly, it is necessary to partly fix the gauge. Otherwise, there will

always exist a flat direction on C associated to the gauge symmetry for every field

configuration, thus rendering saddle-point searches inherently pathological. Both

requirements are best implemented in spherical coordinates (ξ, θ, φ), with ξ = g2vr

a convenient radial coordinate. A radial gauge condition – which will be relaxed

later – has the gauge fields satisfy W a
ξ = 0 everywhere; their remaining components

will start at the canonical vacuum and need to reach an adjacent gauge image of

the vacuum at spatial infinity. Similarly, the Higgs field h needs to converge to v at

spatial infinity. A useful piece of notation defines the Higgs doublet at infinity as

Φ∞ (θ, φ)
def
= lim

ξ→∞
Φ (ξ, θ, φ) . (5.5)

The boundary condition on h requires the 2-manifold defined by (5.5) to fulfill∣∣Φ∞ (θ, φ)
∣∣ = v√

2
(5.6)

for all θ and φ. While this greatly constrains the behaviour of Φ∞, it is not yet

uniquely defined. A last gauge freedom is exhausted by requiring

Φ∞(θ = 0, φ)
def
=

v√
2

(
0

1

)
, (5.7)

which is identified with Eq. (5.2) for 〈h〉 = v and thus uniquely fixes the Higgs

vacuum configuration. The canonical vacuum of the theory is thus given by

Wvac (ξ, θ, φ) = 0 , Φvac (ξ, θ, φ) =
v√
2

(
0

1

)
. (5.8)

The non-contractible loop on C of Higgs vacuum manifold configurations at in-

finity is given by [54]

Φ∞ (θ, φ;µ)
def
=

(
Φ∞

1

Φ∞
2

)
=

v√
2

(
sinµ sin θ eiφ

e−iµ (cosµ+ i sinµ cos θ)

)
. (5.9)

It takes an external loop parameter µ ∈ [0, π] and thus starts and ends at (5.7).

When the gauge is completely fixed, Eq. (5.9) describes a loop from and to one

identical vacuum. It can be reinterpreted as the path in Fig. 5.1 that attains the

sphaleron configuration for some µ by lifting the radial gauge condition on the W a.
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CHAPTER 5. THE ELECTROWEAK SPHALERON

For all choices of {θ, φ, µ}, Φ∞ needs to be a finite-energy configuration. This

constrains the asymptotic behaviour of the kinetic terms of Φ∞. In particular, it

implies the angular covariant derivatives [54, 118]

DθΦ
∞ (θ, φ;µ) = 0 DφΦ

∞ (θ, φ;µ) = 0 . (5.10)

Generality of Eqs. (5.10) holds if the covariant derivatives, and thus the correspond-

ing components of the gauge fields, meet a certain structure. The U(2) matrix

U∞ (θ, φ;µ)
def
=

√
2

v

(
Φ∞∗

2 Φ∞
1

−Φ∞∗
1 Φ∞

2

)
, (5.11)

defined such that

Φ∞ (θ, φ;µ) =
v√
2
U∞ (θ, φ;µ)

(
0
1

)
(5.12)

for all θ, φ and µ, provides the necessary ingredient. The angular components of

the ‘pure’ gauge field at spatial infinity can be fixed as1

W∞
θ (θ, φ;µ)

def
= − i

g2
∂θU

∞ (U∞)−1 W∞
φ (θ, φ;µ)

def
= − i

g2
∂φU

∞ (U∞)−1 (5.13)

and make sure that Eqs. (5.10) are met2. The tools at hand allow for a general

ansatz of the Higgs and gauge fields as [54]

Φ (ξ, θ, φ;µ) = h(ξ) Φ∞ (θ, φ;µ) +
(
1− h(ξ)

) v√
2

(
0

e−iµ cosµ

)
(5.14)

Wξ (ξ, θ, φ;µ) = 0 (5.15)

Wθ (ξ, θ, φ;µ) = f(ξ)W∞
θ (θ, φ;µ) (5.16)

Wφ (ξ, θ, φ;µ) = f(ξ)W∞
φ (θ, φ;µ) . (5.17)

With this choice of functions, and omitting the explicit radial dependence of f and

h for the sake of clarity, the energy functional (5.4) can be rewritten as [30]

E(µ) =4πv

g2

∫ ∞

0

dξ sin2µ

{[
4

(
df

dξ

)2

+
8

ξ2
[f(1− f)]2 sin2µ

]
+
ξ2

2

(
dh

dξ

)2

+ [h(1− f)]2 − 2h(1− h)f(1− f) cos2µ+ (1− h)2f 2 cos2µ

+
λ

4g22
ξ2(h2 − 1)2 sin2µ

}
(5.18)

1The condition of U(x) being an SU(2) matrix is lifted [54]: the loop in C along vacua of the

Higgs doublet and between SU(2) vacua sweeps non-vacuum states of the latter, as discussed in

Chapter 4.
2An explicit proof can be recovered in e.g. Ref. [118].
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5.1. Sphaleron field configuration

in agreement with Ref. [54]. The fields should be well-defined at the origin. Fur-

thermore, the ansatz needs to behave as expected at spatial infinity, i.e. converge

to the desired vacuum configuration of the fields, such that the sphaleron energy

attain a finite value. This motivates the boundary conditions

lim
ξ→0

h(ξ) = 0 lim
ξ→0

1

ξ
f(ξ) = 0 (5.19)

lim
ξ→∞

h(ξ) = 1 lim
ξ→∞

f(ξ) = 1 , (5.20)

which fully characterize the sphaleron and its energy. The value of µ emerges from

the requirement that it deliver a configuration along the loop of Φ∞ atop the po-

tential barrier. Ref. [54] showed this will in general be the case for µ = π/2, as it

maximizes the terms3 in E and thus marks the barrier top along the path between

vacua. This further characterizes sphalerons as field configurations with half-integer

NCS sitting midway between states of integer-valued NCS [55].

The radial field profiles f and h corresponding to the mountain pass of minimal

energy – thus, a saddle-point – are obtained by solving the Euler-Lagrange equations

that follow from Eq. (5.18) [55]:

ξ2
d2f

dξ2
= 2f(1− f)(1− 2f)− ξ2

4
h2(1− f)

d

dξ

(
ξ2
dh

dξ

)
= 2h(1− f)2 +

λ

g22
ξ2(h2 − 1)h .

(5.21)

This set of equations is yet to be solved analytically. Integration of approximate

solution ansätze and numerical solutions to the field equations as shown in Fig. (5.3)

place the sphaleron energy for the tree-level SM in the range 9− 10TeV [30]. Slight

shifts to, in general, lower energies will arise in the presence of a non-vanishing

U(1) field. Introducing a profile function q(ξ) for the U(1) field, such shifts can be

calculated perturbatively as [55]

∆E = −π
3

g21v

g32

∫ ∞

0

dξ ξ2h2(ξ)
[
1− f(ξ)

]
q(ξ) . (5.22)

Details on the U(1) corrections can be found in Appendix E.
3Although, as the original paper states, this might not hold for all terms for contrived choices

of f and h [54]. After all, and as Ref. [119] notes, the original construction proves the existence

of a sphaleron in EW theory, i.e. the canonical sphaleron presented here and generally considered

for EWBG in the literature; it does not rule out the existence of other sphaleron-like solutions or

saddle-points of E . At any rate, neither f , h nor µ are to be understood as a free choices in the

standard construction, but as consequences of the saddle-point condition on E .
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CHAPTER 5. THE ELECTROWEAK SPHALERON

Figure 5.3: Field profiles f(ξ) and h(ξ) in the tree-level SM as a function of the dimensionless
radial coordinate ξ = g2vr. These curves were obtained using a relaxation algorithm (see Chapter
9).

Although this section has introduced the sphaleron at zero temperature, this work

is mainly interested in both its energy and its effects at finite temperature. The

calculation of E at finite temperature is straightforward from Eq. (5.18), merely re-

quiring the replacements of v and V (φ) by their temperature-dependent equivalents.

Thermal effects, however, raise additional questions. Sphalerons are phenomenolog-

ically bound to the phase of broken EW symmetry [75]. They are saddle-points of

Eq. (5.4) featuring a doublet 〈Φ〉 6= 0, a feature not shared by the EW symmet-

ric phase. The nominal “sphaleron” configuration does not exist in this phase, yet

potential barriers between the SU(2) vacua still do. They must still exist, as the

SU(2)L vacua remain topologically distinct. Despite the lack of a sphaleron config-

uration, transitions do still take place in the symmetric phase by means of gauge

field configurations which, as the sphaleron, are able to prompt ∆NCS = 1. In line

with the general lack of semantic nuance found in the literature, this work will be

generous in its use of nomenclature and still refer to “sphalerons” when discussing

transitions before EWSB.

5.2 The sphaleron rate

In Chapter 4, the late assumption that over-the-barrier transitions can deliver a

statistically meaningful source of baryon number violation provided the motivation
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5.2. The sphaleron rate

behind the present chapter. The rate of such processes thus requires closer inspec-

tion. In the symmetric phase, transitions between SU(2)L vacua are particularly

enhanced. On dimensional grounds, their rate per volume can be derived as [75]

Γs
sph

V
∼ α4

WT
4 , (5.23)

although more recent lattice calculations suggest up to ∼ α5
WT

4 [120, 121]. In the

phase of broken symmetry, semi-classical calculations are a typical procedure: a

sphaleron process can be modeled as a particle on top of a potential barrier over-

coming the latter in the correct direction. This approach, which yields [56, 122]

Γb
sph

V
≈ ω−

2π
Ntr(NrotVrot)

(
αWT

4π

)3

α−6
W,T κ e

−E(T )/T

=

[
2Ntr(NrotVrot)

ω−

gv(T )

]
T 4

(
αW

4π

)4(
4πv(T )

gT

)
κ e−E(T )/T , (5.24)

suffices to characterize the relation of the sphaleron rate and its energy4. Such cal-

culations require a careful treatment of the underlying symmetries of the system –

this is the origin of the normalization factors Ntr and Nrot, as well as of the volume

factor of the rotation group Vrot = 8π2. The rate (5.24) also features αW = g22/4π,

which is the weak fine structure constant at zero temperature, which evaluates to

αW,T = αWT/g2v(T ) at high temperatures. v(T ) is the Higgs VEV at finite tem-

perature. ω− is the negative eigenmode of the saddle-point configuration atop the

barrier, while κ is a determinant associated to the quantum and thermal fluctua-

tions about the sphaleron background configuration which drive the process [119,

123–125]. The full derivation of the sphaleron rate and typical values of the above

constants in the SM may be recovered in Appendix F.

In view of this short discussion, as well as Eqs. (5.23) and (5.24), one might be

led to question the significance of sphalerons. After all, nominal sphaleron processes

are Boltzmann-suppressed, not so the pure gauge field transitions briefly mentioned

above. As will become clear in Chapter 7, however, both behaviours are crucial

elements of EWBG.

4The calculation invokes a finite-temperature treatment as hinted at in Chapter 3; this is the

origin of the 1/T -factor in the exponential. A brief and conceptual introduction to rate calculations

is provided in Chapter 6, while a derivation of the rate (5.24) can be found in Appendix F.
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CHAPTER 6. THERMAL PHASE TRANSITIONS

Chapter 6

Thermal phase transitions

One of the key features of the GWS theory is a phase transition in the EW sector of

the SM at EWSB. Although theoretical and phenomenological studies of the EW-

PhT in the SM have deemed it inadequate for the purposes of EWBG, experimental

verification of its nature remains pending [61–65, 126]. The mechanism of EWBG

takes advantage of the knowledge gap and relies on a first-order phase transition

with additional properties which may be realized in BSM scenarios. This chapter

reviews basic aspects of quantum and thermal phase transitions in preparation for

Chapter 7.

6.1 First-order phase transitions

The free energy of a thermal system is essential in defining the nature of a phase

transition. For a system with a grand canonical partition function Z(T ), and ig-

noring any chemical potentials µ, the free energy as a function of temperature T is

[95]

F (T )
def
= −T log(Z(T )) . (6.1)

In a volume V , the corresponding free energy density is given by

f(T )
def
=
F (T )

V
. (6.2)

The quantities F (T ) and f(T ) arise naturally in the effective action formalism in

relation to Γ[φ, T ] and Veff(φ, T ). Assuming translation-invariant, classical fields

in the sense of Chapter 3, and a Euclidean formulation of the theory such that

ΓE[φ] = (V/T )Veff(φ) as suggested by Eq. (3.16), the free energy density of a model

can be related directly to the ground state energy of its effective potential as [95]

f(T ) ≈ Veff(φmin) +O
(
log V

V

)
. (6.3)
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6.1. First-order phase transitions

Phase transitions in general emerge as non-analyticities of the grand canonical free

energy density f(T ) upon changes in the temperature1. Phase transitions which

further exhibit discontinuities in the derivative of the free energy density are called

first-order phase transitions (FOPhT), as opposed to second-order phase transi-

tions (SOPhT). Given relation (6.3) and assuming the analyticity of Veff(φ, T ), it is

straightforward to show that [95]

df(T )

dT
=

[
∂Veff(φ, T )

∂φ

∂φmin

∂T
+
∂Veff(φ, T )

∂T

]
φ=φmin

=
∂Veff(φ, T )

∂T

∣∣∣∣
φ=φmin

. (6.4)

The left-hand side term in parentheses after the first equality vanishes when eval-

uated at the minimum φmin. Discontinuities in df/dT therefore arise from discon-

tinuities in the temperature-dependent evolution of the ground state of Veff(φ, T ),

as showcased to the Left of Fig. (6.1). In comparison, SOPhTs display a smooth

evolution of the ground state, as suggested to its Right. In FOPhTs, the minimum

φmin thus acts as an order parameter of the phase transition: its value will charac-

terize the present phase of the system. In many systems (such as the EW sector of

the SM), such a classification is binary and reduces to whether φmin = 0 or φmin 6= 0.

T � Tc

T > Tc

T = Tc

T = Tn

φ

Veff(φ, T )

T � Tc

T > Tc
T = Tc

T < Tc

T � Tc

φ

Veff(φ, T )

Figure 6.1: Left: Evolution of the potential in a FOPhT. The critical temperature Tc is defined
by the degeneracy of the minima at φ = 0 and φ 6= 0. The discontinuous phase transition takes
place at the nucleation temperature temperature Tn . Tc (see section 6.4). Right: Evolution of
the potential in a SOPhT. As the temperature drops, the minimum develops away continuously.
Tc is defined by the condition d2Veff(φ)/dφ2|φ=0 = 0. Figures adapted from Refs. [74, 127].

1And the chemical potential µ, if considered. Idem for df/dµ.
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CHAPTER 6. THERMAL PHASE TRANSITIONS

FOPhTs are also related to discontinuities in another quantity, the energy density

[95]

e(T )
def
= f(T )− T

∂f

∂T
. (6.5)

As the energy cannot simply vanish, there needs to exist a mechanism able to dissi-

pate the latent heat implied by the non-analyticity in e. FOPhTs transfer this energy

into the nucleation and growth of bubbles of the new phase. Bubble nucleation is

studied within the context of quantum and thermal tunneling through potential

barriers, depicted in Fig. 6.2. The essentials of the formalism will be addressed in

the following sections.

6.2 Barrier penetration and quantum tunneling

In quantum mechanics (QM), the ground state energy E+ of metastable false vacua

is characterized by an imaginary component that induces a decay rate to a true

vacuum [95, 128, 129],

Γ (E+)
def
= −2 Im (E+) . (6.6)

The Euclidean path integral formulation of QM provides a method for the calculation

of such decay rates [130]. The central object is the Euclidean vacuum-to-vacuum

transition amplitude [131]

ZE[0] = 〈φ+| e−Hτ |φ+〉 =
∫

DΦ e−SE [φ] , (6.7)

for some point particle, where φ+ is to be understood as a QM state, H is the Hamil-

tonian of the system and SE[φ] is the Euclidean action with a potential bounded

from below. This amplitude can be related to the energy E+ by introducing a

complete set of eigenstates such that

〈φ+| e−Hτ |φ+〉 =
∑
n∈N

e−Enτ 〈φ+|n〉 〈n|φ+〉 . (6.8)

For large times τ , the false ground state energy will become the major contributor

to the partition function,

lim
τ→∞

〈φ+| e−Hτ |φ+〉 ∼ e−E+τ , (6.9)

and hence defines the decay behaviour to leading order [131]:

Γ = −2 Im (E+) =
2

τ
Im
(
logZE[0]

)
. (6.10)
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6.2. Barrier penetration and quantum tunneling

φ− φ+

E+

φ

V (φ)

Figure 6.2: Potential with two non-degenerate minima. In a quantum FOPhT, the system tunnels
under the barrier at the origin [131].

On the whole, the study of tunneling rates reduces to calculating partition func-

tions of false vacuum transitions. Exact calculations of Eq. (6.10) are notably dif-

ficult, and care is required in approximation schemes in order to avoid introduc-

ing non-physical artifacts. The semi-classical scheme that underpins calculations

relevant to this work is the saddle-point method [93]. It restricts the functional

integration in Eq. (6.7) only to critical points of the action, i.e. points φ̂ such that

δSE[φ]

δφ

∣∣∣∣
φ=φ̂

= 0 , (6.11)

and so ZE ∼ exp[−SE(φ̂)]. When such points are saddle-points with suitable prop-

erties, the amplitude (6.7) can be shown to be complex valued (see Appendix C),

thus inducing a transition rate in the spirit of Eq. (6.10).

The form of Eq. (6.7) might suggest the adoption of this formalism by QFT.

Although illustrative, the QM approach cannot entirely capture the field theoretical

nuances beyond good order of magnitude estimates. Ultimately, formal subtleties

beyond the scope of this short introduction render the rate (6.10) [131]

Γ ∼ Im
(
ZE[0]

)
, (6.12)

amended by a prefactor A that accounts for the effects of quantum fluctuations.

Thus, with φ upgraded to a scalar field and ZE ∼ exp[−SE(φ̂)], a working definition

for the rate of false vacuum transitions in QFT can be obtained as [132, 133]

Γ ∼ A e−SE [φ̂] [1 +O(~)] . (6.13)
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CHAPTER 6. THERMAL PHASE TRANSITIONS

6.2.1 The bounce

In principle, applying Eq. (6.13) requires knowledge of all saddle- points φ̂ for which

the action becomes sizeable, which could quickly become intractable. However,

semi-classical calculations typically single out one special saddle-point. It is the

solution to the classical equation of motion in the inverted potential −V (φ). In this

picture, the prescription (6.7) for paths starting at the false vacuum, climbing uphill

and returning to the false vacuum suggests a bouncing motion (Left of Fig. 6.3).

Consequently, the associated field configuration is deemed the bounce [132]. It can

be shown that, despite the existence of a plethora of saddle-points, the decay rate

may generally be related back to the bounce action [134, 135]. This is but one of its

features. For a scalar field, the generic bounce action in D dimensions reads

SD
E [φ] =

∫
dDx

(
1

2
∂µφ ∂

µφ + V (φ)

)
, (6.14)

from which the Euler-Lagrange equation of motion can be easily derived. As Eu-

clidean time is assumed, Eq. (6.14) is subject to an O(D) symmetry, which can be

exploited by spherical coordinates. Defining a radial coordinate ρ =
(
τ 2 + |~x|2

)1/2,
the equation of motion can be cast as [27]

d2φ

dρ2
+
D − 1

ρ

dφ

dρ
=

d

dφ
V (φ) (6.15)

with the boundary conditions

lim
ρ→∞

φ(ρ) = φ+ , (6.16)

dφ

dρ

∣∣∣∣
ρ=0

= 0 . (6.17)

Bounce solutions φb to Eq. (6.15) correspond to field configurations interpolating

between the false and the absolute vacua. They can be interpreted as the radial

profile of the Euclidean bubble and extremize its action SE. Except for isolated cases,

bounce solutions cannot be found exactly and require either strong approximations

or numerical methods, most often in combination.

Back in Minkowski spacetime, competition between the volume and surface en-

ergies determines the nucleation of Minkowski bubbles (Right of Fig. 6.3). The

minimal radius RM at which these bubbles begin to exist is given precisely by RE,

which further stresses the importance of the bounce solution.
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φ− φ+

φ
−V (φ)

φ-

φ+

Esurf

Evol

Figure 6.3: Left: Inversion −V (φ) of the the potential in Fig. 6.2. Now in Euclidean spacetime,
the field rolls down from φ+, uphill to φ− and downhill again back to φ+. Adapted from Ref. [114].
Right: In Minkowski spacetime, bubbles nucleate with radius RM = RE as soon as the outward
pressure generated by the volume energy ∼ V (φ−) exceeds the inward acting surface tension [114].

6.3 Nucleation in finite-temperature field theory

Extension of nucleation theory to finite temperatures requires some attention to

detail. One important update is the replacement of the bare energy E by the free

energy F in decay rate considerations, i.e. Γ ∼ Im(F ). Furthermore, symmetry

needs to be properly treated. As higher temperatures are considered, the time

coordinate τ undergoes compactification as outlined in Chapter 3 and the original

O(D) symmetry is lost in favour of O(D − 1). The net effect of this change in the

formalism is

SD
E [φ] → 1

T
SD−1
E [φ] (6.18)

and the equation of motion becomes

d2φ

dρ2
+
D − 2

ρ

dφ

dρ
=

d

dφ
V (φ) . (6.19)

Furthermore, in a thermal setting, the dominant fluctuations prompting the transi-

tion will be of thermal nature. Thus, the nucleation rate in a thermal theory of four

spacetime dimensions behaves as [91, 136–138]

Γ ∼ A(T ) e−S3
E [φ]/T with A(T ) ∼ T 4. (6.20)

36



CHAPTER 6. THERMAL PHASE TRANSITIONS

6.4 Electroweak nucleation in a thermal universe

The EWPhT needs to be viewed in the context of an expanding thermal universe.

In the chronology of cosmic events, the EWPhT is theorized to happen while the

universe is still hot – T ≈ O(102 GeV) – and dominated by radiation. Its energy

density is thus [122]

ρ(T ) =
π2

30
g∗(T )T

4 (6.21)

for g∗(T ) relativistic degrees of freedom. It governs an expansion described by the

first Friedmann equation [91, 122, 139]

H2(T )
def
=

( .
a

a

)2

=
ρ(T )

3M2
Pl

(6.22)

with the scale factor a = a(t(T )) and the reduced Planck massMPl = 2.43 ·1018 GeV

(see Appendix A). The EW potential evolves as the universe expands and its tem-

perature decreases. The initial scenario typically considered in the SM and beyond

is one of restored SU(2)L × U(1)Y symmetry: the temperature-dependent effective

potential starts out with a global minimum at 〈Φ〉 = 0 at high temperatures such

that the ground state respect the full EW gauge group. With decreasing temper-

atures and assuming a FOPhT, the potential develops a local vacuum manifold M

for at least one 〈Φ〉 6= 0. Degeneracy of this manifold with the minimum at the

origin defines a critical temperature Tc, as suggested by Left of Fig. 6.1. For tem-

peratures below Tc, one point on M takes over via SSB as the global ground state

of EW theory, where the gauge group reduces from SU(2)L × U(1)Y to U(1)em.

The phase transition is potentially viable as early as Tc is reached. In practice,

for the transition to complete, at least one bubble needs to nucleate within the

cosmic horizon. As indicated in Left of Fig. 6.1, this happens at some nucleation

temperature Tn . Tc. The requirement that nucleation probability reach unity

within the horizon2 sets a condition that defines Tn [91, 140, 141], i.e.∫ tn

−∞
dtΓ(t)H−3(t)

(∗)
=

∫ ∞

Tn

dT
T

Γ(T )H−4(T )

=

∫ ∞

Tn

dT
T

(√
90

g∗(T )

MPl

πT

)4

e−S3
E/T ∼ O(1) (6.23)

2Adiabaticity in the expansion of the universe is assumed, i.e. a(t(T )) · T (t) = const. at (∗).

37



6.5. The EWPhT in BSM physics

=⇒ S3
E

Tn
∼ 137− 4 log

(
Tn

100GeV

)
∼ O(100) . (6.24)

Tn is thus the temperature at which the phase transition sets in, often overlooked

on account of its cumbersome evaluation and the rough order-of-magnitude esti-

mate Tn ≈ Tc. Its computational inconvenience notwithstanding, it is stressed that

Eq. (6.24) represents a general constraint in searches for viable transition scenarios:

models featuring a critical temperature do not intrinsically get to satisfy the re-

quirement for nucleation, meaning the correct low-temperature EW phase may not

be reached.

6.5 The EWPhT in BSM physics

An important feature of many theories beyond the SM resides in additional field-

dimensions of the effective potential on account of new, exotic fields. Typically,

models with extended scalar sectors – like the ones considered later on in this work

– have been shown to possess non-trivial phase transition dynamics [127, 142–150].

Furthermore, and depending on the model assumptions, high-temperature EW sym-

metry may be complemented by further symmetry requirements, such as an addi-

tional Z2 symmetry [148]. Therefore, such models can present complex landscapes

of phase transition patterns. The transition to the present EW vacuum may thus

happen in several steps by virtue of intermediate phases, not all of which feature

instances of broken EW symmetry. The class of singlet scalar extensions (Chapter

11) is a paradigmatic example: intermediate transitions may be restricted to the

new field dimensions, thus preserving the EW gauge group. More generally, these

multi-step scenarios may present a mixture of first- and second-order transitions.

While the latter require separate treatment, the former can be described in terms

of the physics outlined in this chapter. At any rate, the crucial element with re-

gards to successful EWBG in such scenarios is at least one instance of a first-order

EW-symmetry-breaking step.
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Chapter 7

Electroweak baryogenesis

7.1 Outline of the mechanism

EWBG is specifically tailored to match one of the strengths of the SM – its descrip-

tion of EW physics, with particular emphasis on the Higgs sector – while exploiting

the knowledge gaps in the present state of the art in order to incorporate all of

Sakharov’s conditions for baryogenesis (Chapter 1):

(i) It features baryon number violation in the form of the sphaleron process in-

troduced in Chapters 4 and 5.

(ii) It postulates a first-order EWPhT, as described in Chapter 6, that provides

the required thermal off-equilibrium conditions.

(iii) It accounts, at the very least, for the degree of CP violation already present

in the SM, although this will be insufficient. Further sources of CP violation

can be added in SM extensions.

The fundamental idea behind the mechanism is that, under the off-equilibrium con-

ditions of a FOPhT, asymmetries in C and CP can be reprocessed by the sphaleron

process into a baryonic asymmetry.

Before the phase transition

The starting assumption is a primitive universe with no net baryon number. In

this early stage, the universe expands at a rate given by the temperature-dependent

Hubble constant implied by (6.22), where g∗(T ) ≈ 106.75 are the relativistic degrees

of freedom in the SM at T ∼ O(102GeV) and MPl = 2.43 · 1018 GeV is the reduced

Planck mass [122]. The universe is permeated by the symmetric EW phase with
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7.1. Outline of the mechanism

〈Φ〉 = 0 and therefore sees baryon number violating processes thrive on account of

Eq. (5.23). However, thermodynamic equilibrium makes sure no net baryon number

arises: any single process generating new baryons will be countered by a process

inducing the same number of antibaryons.

Onset of the phase transition

As the temperature of the universe gradually decreases on account of its expansion,

the temperature-dependent effective potential develops a local minimum at a non-

vanishing value 〈Φ〉, and hence a phase where EW symmetry is broken. At some

temperature Tn . Tc, the first bubbles of the broken symmetry phase begin to

nucleate, as shown in Fig. 7.1. From then on, two phases with drastically different

features coexist, separated by the bubble walls: whereas sphalerons remain highly

active in the symmetric phase, they become heavily Boltzmann-suppressed within

the bubbles (Eq. (5.24)).

Figure 7.1: When the phase transition sets in, bubbles of the broken phase appear throughout
space. The bubble wall is comprised between the continuous and the dashed lines. Adapted from
Ref. [30].
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Effects of C and CP violation

The structure of weak interactions makes sure that C symmetry is violated maxi-

mally in the SM. The Yukawa interactions in the quark sector in turn are endowed

with an irreducible complex phase and thus CP violation on account of the CKM

matrix (Chapter 2). These ingredients source C and CP violating interactions with

the bubble wall, i.e. transmission rates into the bubble1 will differ between particles

and antiparticles as well as between (anti-)particles of different chirality [151, 152].

In the scenario showcased by Fig. 7.2, the nature of these interactions with the bub-

ble wall results in a surplus of quarks within the bubble, whereas antiquarks will

dominate in the symmetric phase. Overall, a CP asymmetry sets in on both sides

of the wall.

q̄R

q̄R

qL

qL

qR

qR

q̄L

q̄L

lL

qL

qL qL

Figure 7.2: C and CP violating interactions with the bubble wall result in different transmission
and reflection rates of the quarks. Sphaleron processes couple to qL and – as in the figure – q̄L.
Overall, a production of baryons over antibaryons is induced in attempts to reestablish a chemical
equilibrium between the two in the symmetric phase. This in turn generates an overall net baryon
number. The sphaleron process in this figure is simplified such as to produce ∆B = ∆L = 1 for
the sake of clarity. Adapted from Ref. [30].

1Essentially, a case of quantum mechanical transmission and reflection off a potential barrier.

Quantum transport aspects of EWBG are discussed in Ref. [27].
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Effects of the non-equilibrium conditions

Ahead of the wall, sphalerons still have free rein to carry out baryon number vi-

olating transitions. As before, processes resulting in both positive and negative

baryonic numbers will take place. However, due to the prevalence of antibaryons

in the symmetric phase, sphalerons are biased into the production of baryons in

an attempt to reestablish a local chemical equilibrium. Thus, the CP asymmetry

ahead of the bubble is reprocessed into a net positive baryon number (Fig. 7.2). As

the bubbles expand and their walls sweep the plasma, these newly formed baryons

are transmitted into the phase of broken symmetry, where sphaleron suppression

increases as the temperature drops further (Fig. 7.3). The phase transition proceeds

to permeate the universe as the bubbles keep on expanding and coalescing.

This stage is critical to EWBG on two accounts. On the one hand, bubble ex-

pansion needs to proceed at a rate high enough that the EW broken phase spread

throughout the entire universe, yet low enough that baryon number violating pro-

cesses have time to generate the asymmetry. On the other hand, the baryon number

absorbed into the bubbles is only conserved as long as the sphaleron rate in this

phase is low enough at the moment of the phase transition. Both assumptions are

non-trivial; the former is beyond the scope of this work and treated in some detail

in Ref. [27, 75], while the latter constitutes the essence of this work.

q̄R

qL

qR

qL

lL
qLqL

Figure 7.3: The net positive baryon number generated by sphalerons in the symmetric phase is
absorbed by the expanding bubble. Adapted from Ref. [30].
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7.2 Sphaleron decoupling condition

As suggested by the rate Γb
sph of sphaleron processes claimed in Chapter 5, sphalerons

are subject to a severe Boltzmann suppression in the phase of broken symmetry.

With a vanishing sphaleron activity, the baryon number entering the bubbles should

thus be preserved. However, it can still succumb to total washout if the suppression is

insufficient around the time of bubble nucleation. In a model with c baryonic degrees

of freedom2, the baryon number density nB inside the bubbles evolves according to

[56]
dnB(t)

dt
= −cΓb

sphnB(t) . (7.1)

For the sake of illustration, Γb
sph = Γb

sph(T (t)) and T = T (t) will first be assumed

constant. Then, for a phase transition between the initial and final times ti and tf ,

the fraction of net baryon number density remaining at tf scales as [27]

nB(tf )

nB(ti)
∼ exp

[
− c · const. · exp(−E(T )/T )

]
(7.2)

on account of Γb
sph ∼ exp(−E(T )/T ) in Eq. (5.24). The washout factor (7.2) is thus

extremely sensitive to the sphaleron energy: if too low, sphaleron processes are not

suppressed enough and much of the asymmetry will be erased by the end of the

phase transition. More formally, Eq. (7.1) implies

nB(tf )

nB(ti)
= exp

{
−c
∫ tf

ti

dtΓb
sph

}
. (7.3)

Washout avoidance is attained if the left-hand side of Eq. (7.3) remains of order

one, which implies a similar order of magnitude for the term in parentheses on the

right-hand side [27]. A more formal approach refers back to the Hubble expansion

rate (6.22). For tf = ∞, Ti = T (ti) and T (tf ) = 0, and the scale factors ai = a(ti)

and af = a(tf ), Eq. (7.3) can be recast as3 [122]

nB(tf )

nB(ti)
= exp

{
−c
∫ af

ai

da
a

Γb
sph(a)

H(a)

}
(7.4)

= exp

{
−c
∫ Ti

0

dT

T

Γb
sph(T )

H(T )

}
. (7.5)

2c ≈ 13NF /2 with NF the number of generations is thermodynamically motivated [106, 122].
3And, again, assuming that a(t(T )) · T = const. for adiabaticity.
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In this form, the requirement that the right-hand side remain of order one roughly

translates to [30, 122]

Γb
sph(Ti) < αH(Ti) , (7.6)

where α ∼ 0.1 captures the effects of the integral in Eq. (7.5). Eq. (7.6) is the

seminal baryon washout avoidance criterion [122]. It can be interpreted as sphalerons

decoupling from the remaining processes in the universe and is therefore also known

as the sphaleron decoupling condition [145]. With the definitions of Γb
sph in Eq. (5.24)

and H in Eq. (6.22), Eq. (7.6) can be shown to require [122]

E(Ti)
Ti

> log
(
2NtrNrotVrot

ω−

g2v(Ti)

)
+ 7 log

(
4πv(Ti)

g2Ti

)
− log

(
Ti
MPl

)
− 1

2
log
(
π2g∗
90

)
+ 4 log

(
αW

4π

)
+ logκ− logα ,

(7.7)

with the constants introduced in Chapters 5 and 7.1 and the temperature-dependent

Higgs vacuum expectation value 〈h(T )〉 = v(T ). Numerical evaluation4 of Eq. (7.7)

renders the condition [122]

E(Ti)
Ti

> (35.9− 42.8) + 7 logv(Ti)
Ti

− log Ti
100GeV

, (7.8)

with an uncertainty sourced by the range 10−4 < κ < 10−1 assumed for the sphaleron

fluctuation determinant κ. Eq. (7.8) marks the condition for a sufficiently abrupt

decoupling of the sphaleron processes. In EWBG, it defines the notion of a strong

first-order phase transition (SFOPhT). Models not satisfying the criterion do not

qualify for EWBG; this renders Eq. (7.8) a decisive criterion. Its evaluation is a

central aspect of this work. To this aim, it will be conveniently reexpressed: the

quantity [153]

σi
def
=

E(Ti)
Ti

− 7 logv(Ti)
Ti

+ log Ti
100GeV

(7.9)

will be a measure of the sphaleron decoupling required to satisfy

σi > (35.9− 42.8) (7.10)

in order to mark it as sufficiently abrupt, with the upper (lower) bound correspond-

ing to the upper (lower) bound on κ. In later chapters, (7.10) will be referred to as

the σ-criterion. As in Eq. (7.2), the importance of E(T )/T to sphaleron decoupling
4The values of the constants can be inferred from Appendix F.
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is stressed yet again, given that it dominates the behaviour of σ compared to the

remaining logarithmic dependences.

Resting on the SM-inspired scaling law of the sphaleron energy with the Higgs

VEV given by [154]

E(T ) ≈ E0
v(T )

v0
, (7.11)

the condition for sufficient sphaleron decoupling can be recast as [122]

v(Ti)

Ti
>

(
(0.973− 1.16) + 0.190 logv(Ti)

Ti
− 0.027 log Ti

100GeV

)
·

(
1.91 · 4πv0/g2

E0

)
,

(7.12)

i.e. as a condition on the order parameter of the phase transition

ξi
def
=
v(Ti)

Ti
. (7.13)

It is typically simplified to the order-of-magnitude estimate [75]

ξi & 1 (7.14)

on account of the magnitude of the right-hand side terms5 in Eq. (7.12). Some

references suggest the range [91]

ξi & (1.0− 1.3) (7.15)

as the onset for SFOPhTs, where the upper (lower) bound is induced by the upper

(lower) bound on κ. Condition (7.14), henceforth the ξ-criterion, has come to pre-

vail in the literature in view of its numerical convenience; instead, the σ-criterion

has for the most part been relegated to selected papers for specialists (e.g. Refs.

[122, 145, 153, 155, 156]). Another front on which evaluation of the phase transition

strength has historically been simplified is the onset of the phase transition ti and

the corresponding temperature Ti, at which Eqs. (7.8) and (7.14) need to be evalu-

ated. Since Tc is easier to handle numerically than Tn, it has been far more widely

employed, to the point where most reviews of EWBG, such as Refs. [27, 75], largely

omit any mention of Tn. While this omission may be well justified when Tn ≈ Tc, a

physically strict treatment requires the evaluation at Tn. Finally6, Ref. [157] reports

problems of gauge dependence in standard treatments of quantities like Ti and –

especially – vi, which in turn implicate both σi and ξi.
5As noted in Chapter 6, Ti ∼ O(102)GeV is assumed.
6Although crucial, this issue is beyond the scope of the present work.
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7.3 Status of electroweak baryogenesis

The success of EWBG banks as much on the viability of each subprocess outlined in

section 7.1 as on their overall harmonization. In the status quo of the SM, the theory

is quick to run into problems. First of all, and as pointed out in the introduction, it

has been noted that the amount of CP violation provided by known sources (most

notably the CKM matrix) is largely insufficient to explain the observed baryon

asymmetry [57–60]. Secondly, as discussed in section 7.2, EWBG only works in

case of a SFOPhT. However, the decoupling condition is known to place a modest

upper limit on the Higgs quartic coupling and thus on the Higgs boson mass in SM

perturbative and lattice calculations alike [61–65, 126]. As of the boson’s discovery,

vanilla EWBG in the SM has become a dead end [158].

Despite these drawbacks, EWBG still remains an attractive explanation to the

BAU. Interest persists as the shortcomings of the SM become more and more glaring.

As it stands, the SM fails to deliver on certain areas besides the BAU [1–5, 7–10].

Some of these issues, such as the hierarchy problem and even DM7, closely tie in

with the EW sector [11–13, 159]. As the scientific community persists in its efforts

to tackle these issues, the question arises of whether some exotic model is able to

provide a comprehensive solution. Revisiting EWBG thus becomes mandatory. One

of the many aspects which merit review in BSM scenarios is condition (7.14) for a

SFOPhT, which – despite an uneven assessment across a range of different models

– prevails as a “golden rule” in studies of EWBG. The present work aims to shed

some light on the reliability of condition (7.14), derived under SM assumptions on

the scaling law (7.11) and the order of magnitude of the sphaleron-related constants

in Eq. (7.7), in two BSM scenarios featuring extended scalar sectors.

7Obviously, its relevance to EW physics depends on the specifics of the DM candidate.
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Chapter 8

Constructing the effective potential

The one-loop, thermal effective potential, briefly hinted at in Chapter 3, constitutes

an integral aspect of the analyses and results presented in Part III of this work.

The essence of its character is largely determined by model-specific features, which

are therefore treated in detail throughout Chapters 10 and 11. The present chapter

aims to showcase the general principles, structures and implementations applied

throughout Part III.

8.1 Coleman-Weinberg potential

The Coleman-Weinberg (CW) potential used in this work is obtained in Landau

gauge from dimensional regularization in the modified minimal subtraction (MS)

on-shell renormalization scheme at a scale µ = v ≈ 246.22GeV. It reads [91, 160]

VCW(φ)
def
=

1

64π2

∑
i

(−1)2sinim
4
i (φ)

{
ln

(
m2

i (φ)

µ2

)
− Ci

}
. (8.1)

The sum runs over all the particles i appearing in the model. Their spins si, degrees

of freedom ni and renormalization constants Ci are specific to each species and are

indicated respectively in Table 8.1. The masses mi are mostly model-dependent and

will be addressed in in Chapters 10 and 11.

By using Eq. (8.1), one tacitly drops the infinities inherent to loop calculations, as

they are removed by the renormalization scheme. Nonetheless, it will be necessary

to introduce a finite counterterm potential VCT to fully settle the renormalization

[91]. The coefficients of the counterterm potential can be fixed through specific

renormalization conditions. In general, they will be chosen such as to keep the tree-

level minima and masses intact. Further details can be inferred from the respective

model-building sections in Chapters 10 and 11.
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Table 8.1: Specifications for the spins si, the degrees of freedom ni and renormalizations

constants Ci appearing in the CW and one-loop thermal potentials of the models featured

in this work. Fields marked with the subscript L correspond to longitudinal components;

those with T , to transverse ones. Values adapted from Refs. [149, 156].

Species si ni Ci

Quarks 1/2 12 3/2
Charged leptons 1/2 4 3/2
Neutral scalars 0 1 3/2
Charged scalars 0 2 3/2
Goldstones 0 1× 3 3/2
W±

L 1 2 3/2
W±

T 1 4 1/2
ZL 1 1 3/2
ZT 1 2 1/2
γT 1 2 0
γL 1 1 0

8.2 Thermal one-loop corrections

In order to track phase transitions, Chapter 3 suggested to account for thermal ef-

fects. The dominant contributions are provided by the thermal one-loop corrections

V th
1 (φ;T )

def
=

T 4

(2π)2

∑
i

niJB,F

(
m2

i (φ)

T 2

)
, (8.2)

with a sum over i sweeping the particle content, where

JB,F (x)
def
= ±

∫ ∞

0

dz z2 ln (1∓ e−
√
z2+x) (8.3)

are the thermal functions for bosons and fermions, respectively [97]. Various ap-

proximation schemes can handle the numerically cumbersome integrals. In the

high-temperature range defined as |x| � 1 for x def
= m2/T 2, the expansions [161]

JB(x) ≈ −π
4

45
+
π2

12
x− π

6
x

3
2 − 1

32
x2 ln

(
x

ab

)
(8.4)

JF (x) ≈ −7π4

360
+
π2

24
x+

1

32
x2 ln

(
x

af

)
(8.5)

with ab = 16π2 exp(3/2− 2γE) and af = π2 exp(3/2− 2γE) are justified and widely

employed in the literature. Another approach, developed in Ref. [162], consists in

an expansion of the J-functions in terms of Bessel functions of the second kind,

JB,F (x) = lim
N→∞

∓
N∑
r=1

(±1)r

r2
K2(r

√
x) . (8.6)
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This approach has been shown to provide a highly reliable approximation over a

wide range of temperatures for as low as N = 5 [160]. For the present work, this

was the chosen implementation.

8.3 Thermal resummation

Thermal dependence in FTFT prompts a competition between the temperature and

the mass scales which needs to be tracked. A careful revision of the leading-order

diagrams will reveal the breakdown of the one-loop perturbative expansion at high

temperatures and the need for a scheme that fixes this conduct. A standard, real

φ4-theory1 with a mass parameter µ2 > 0 and self-coupling λ will serve to showcase

this rather general issue (cf. Refs. [91, 95, 161]). Its self-energy diagrams induce

temperature-dependent corrections to the mass parameter term of the potential

[163],

− µ2 → −µ2
eff = −µ2 +Π(T ) . (8.7)

The exact temperature dependence of Π(T ) is determined by the superficial degree

of divergence D of the diagram2. Π(T ) will scale at least linearly with T on account

of the prescription for loop integrals in FTFT (Appendix B, Eq. (B.5)). However,

with D > 0 and in absence of infrared (IR) divergences in loops associated to bosonic

propagators, Π(T ) will scale as λTD for the generic, so-called “hard thermal loop”

[161]. The crucial quantities to assessing the validity of the perturbative expansion

are λ and

α
def
=
λT 2

µ2
. (8.8)

As long as α, λ � 1, the expansion is well-behaved. However, in high-temperature

scenarios, the occurrence of symmetry restoration brought about by a vanishing of

µ2
eff suggests that hard loops will typically reach the scale of µ2 and thus α ∼ 1.

At this stage, neglecting higher-order loop diagrams like those in Fig. 8.1 becomes

untenable, as they will constitute leading contributions to the effective potential.

1i.e. the tree-level potential Vtree(φ) = − 1
2µ

2φ2 + 1
4λφ

4 is assumed.
2D = D ·#loops−2 ·#GB−#GF , where D is the number of space-time dimensions and #loops

and #GB,F are the number of loops and gauge boson/fermion propagators in the diagram [79].
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∼ λT 2 ∼ λ2 T
3

µ
αn−1

Figure 8.1: On the left, the hard thermal loop goes like λT 2 to leading order. On the right,
n loops were added on top of it. Close to symmetry restoration one has α ∼ 1, which means
such daisy diagrams are not just unsuppressed but might constitute leading contributions to the
self-energy. Adapted from Refs. [91, 127].

Different prescriptions exist in order to deal with such thermal misbehaviour of

the theory. The widely used (truncated)3 full dressing scheme proposes the generic

replacement

m2
i (φ) → m2

i (φ) + Πi(T ) (8.9)

for all field-dependent masses entering the effective potential via Eqs. (8.1) and

(8.2) [164, 165]. This standard procedure amounts to a resummation of all modes

in Eq. (B.5) and comes at the cost of irregularly blending the ultraviolet (UV) and

IR dynamics of the system [166]. In order to avoid such inconsistencies, Ref. [167]

instead suggests restricting the thermal treatment to the bosonic zero modes in

loops, i.e. the massless modes corresponding to n = 0 in Eq. (B.5). This approach

comes with its own problems, as its consistency relies on the steady assumption that

m2
i /T

2 � 1, which may not hold throughout parameter scans of a model [161].

8.4 Thermal Debye masses

Self-energy corrections are specific to each model as they depend on the available

couplings. For this reason, all of the thermal Debye masses will be indicated in

Chapters 10 and 11. Some general statements are in order, however. For a scalar φ

sourcing a thermal potential (8.2), the corrections can be captured by [141, 161]

Πφ(T ) ≈
d2V th

1 (φ;T )

dφ2
(8.10)

3Truncated because the cumbersome integral expressions for Πi(T ) are usually replaced by

leading order approximations, as detailed in the next section [96, 161].
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with V th
1 evaluated at the zero-temperature masses. To leading order in x in the

expansions (8.4) and (8.5), the corrections become field-independent. Fermions and

gauge bosons also acquire thermal mass corrections. As the former are largely

negligible for the present work, only the corrections to the boson masses will be

accounted for. It is worth pointing out that the transverse modes do not obtain

such corrections, being shielded by custodial symmetry [168].

8.5 Full thermal effective potential

In summary, there exist two a priori inequivalent implementations of the effective

potential. For the case of one field dimension, the standard truncated full dressing

procedure yields [161]

Veff (φ;T ) = Vtree (φ) + VCW (φ) + VCT (φ) + V th
1 (φ;T ) (8.11)

with the replacement m2
i (φ) → m̃2

i (φ) = m2
i (φ)+Πi(T ) everywhere. The alternative

treatment keeps the zero temperature masses throughout VCW and V th
1 and delivers

Veff (φ;T ) = Vtree (φ) + VCW (φ) + VCT (φ) + V th
1 (φ;T ) + Vdaisy(φ;T ) , (8.12)

where

Vdaisy (φ;T )
def
= − T

12π

∑
i

ni

[(
m̃2

i (φ, T )
) 3

2 −
(
m2

i (φ)
) 3

2

]
(8.13)

takes care of the daisy resummation [161].

53



Chapter 9

Numerical methods

Model implementation in line with Chapter 8 is followed by essentially threefold nu-

merical efforts. First, suitable model parameters need to be found. The theoretical

and experimental screening criteria are model-dependent and thus treated in Chap-

ters 10 and 11. Successful parameter sets are then passed onto CosmoTransitions,

which returns information on the viability and the character of phase transitions

in the model. This output is finally fed into a relaxation algorithm which allows

to solve the sphaleron equations – and thus to calculate its energy – both at zero

and finite temperature. A brief description of the numerical methods is provided

hereinafter.

9.1 CosmoTransitions

Finding solutions to the bounce equation (6.19) is a challenging task: whereas quasi-

analytical methods like the overshoot/undershoot method may find a satisfactory

numerical implementation in one field dimension (see e.g. Refs. [169, 170]), the

scope of the problem increases dramatically with the number of fields. The package

CosmoTransitions makes use of a path deformation method which by contrast re-

mains stable in higher field dimensions [171]. It takes advantage of the fact that, in

N field dimensions, Eq. (6.19) can be decomposed into a parallel and a perpendicular

component along the bounce path between the vacua in field space. More precisely:

in N field dimensions, one has φ(y) = (φ1(y), ..., φN(y)) for some parametrization

y = y(ρ). Then, the bounce equation (6.15) can be reexpressed as

d2y

dρ2
+
ε

ρ

dy

dρ
=

∂

∂y
V (φ(y)) (9.1)

d2φ(y)

dy2

(
dy

dρ

)2

= ∇⊥V (φ(y)) (9.2)
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with ε = D − 1 or ε = D − 2 depending on the thermal scenario. The algorithm

initializes a straight bounce path and solves the one-dimensional (9.1) via shooting.

It then checks whether the solution satisfies Eq. (9.2). If not, it iteratively deforms

the path and reevaluates the equations until a solution to both is obtained. In

this manner, CosmoTransitions is able to provide the bounce action as well as the

nucleation temperature Tn and vacuum expectation values 〈φ(y)〉n = (v1,n, ..., vN,n).

The corresponding and more trivially accessible critical quantities Tc and 〈φ(y)〉c =

(v1,c, ..., vN,c) are provided as well.

The analysis carried out with the package for the present work relies on two

implementations of the code accessible at [172] (for the analysis in Ref. [148]) and

[173] (implemented for Ref. [174]).

9.2 Relaxation algorithm

The system of equations (5.21) of the sphaleron falls under the category of so-

called boundary value problems, for which a wide variety of solvers exist in con-

ventional computational software. They usually correspond to implementations of

two classes of methods: “shooting” and collocation [170]. However, these standard

solvers quickly reach their limits when confronted to the sphaleron equations. Most

solutions are plagued by divergences towards vanishing radii; and, as one attempts

to increase the domain of interest, these methods quickly meet their doom. De-

pending on the solver, implementing different types of boundary conditions can be

a challenge in itself. It is therefore crucial to develop a method that takes care of the

boundary conditions and of potentially large domains of interest. At the same time,

the chosen method needs to remain stable as the number of fields increases. The

relaxation method was found to meet all of these needs, and the study of sphalerons

has in fact seen successful implementations thereof in the past (see e.g. Refs. [145,

155, 156]). In the following, the implementation suggested by Ref. [169] and used

for this work is presented.

Higher order ordinary differential equations and coupled systems thereof can

typically be recast as systems of N first-order differential equations

dy

dx
= g[x,y] , (9.3)
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where y = y(x) is the N -dimensional state vector of the system evaluated at the

point x. Computational methods generally profit from this feature, and finite-

difference methods like the relaxation algorithm take Eq. (9.3) as a starting point.

These methods then proceed by discretizing the domain of the independent variable

x into a finite mesh of M points xk. In general, there is no unique discretization

prescription [169]. However, a typical approach calculates the derivative of y on the

interval (xk−1, xk] as
dyk

dx
≈ yk − yk−1

xk − xk−1

, (9.4)

with yq
def
= y(xq); the right-hand side of Eq. (9.3) is in turn evaluated at the midpoint

of the interval. At every interior point xk, Eq. (9.3) is thus ideally rendered

yk − yk−1 − (xk − xk−1) g

[
1

2
(xk + xk−1),

1

2
(yk + yk−1)

]
= 0N . (9.5)

The finite difference (9.5) relates two adjacent mesh points and two state vectors in

a system of N algebraic equations at every interior xk. Solutions to Eq. (9.3) are

found as sets of yk that optimally satisfy Eq. (9.5) all over the mesh.

The method is initialized with an educated guess of the solution, which is trans-

lated into a set of initial yk throughout the mesh. This choice will in general not

satisfy the equality in Eq. (9.5) and lead to the N -dimensional deviation

Dk(yk,yk−1) = yk − yk−1 − (xk − xk−1) g

[
1

2
(xk + xk−1),

1

2
(yk + yk−1)

]
(9.6)

for each interior xk. The boundary equations at k = 1 and k = M instead have a

special form: they are manually set to fix the boundary conditions. To this aim, the

n1-dimensional D1 at the boundary x1 is made to meet

D1(y1) = B(x1,y1) = 0n1 (9.7)

for some algebraic relation B involving x1 and y1. Similarly, at xM and with n2 =

N − n1, the n2-dimensional DM is set such that

DM(yM) = C(xM ,yM) = 0n2 . (9.8)

For M meshpoints and a system (9.3) of N equations, the full vectors

ỹ
def
=


y1

y2...
yM

 and D(ỹ)
def
=


D1(y1)

D2(y1,y2)...
DM(yM)

 (9.9)
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are (M ·N)-dimensional. The system is solved when a ỹ is found such that

D(ỹ) = 0M ·N . Educated initializations of ỹ will minimize the components of D

from the start. However, a scheme is needed which provides information on how to

vary each component of ỹ in order to better render the solution. One such scheme

is provided by the multivariate Newton-Raphson method for root-finding, which

iteratively improves ỹ until D(ỹ) = 0M ·N within a chosen degree of tolerance.

Newton’s method assumes a linear perturbation of the system, i.e. ỹ → ỹ+∆ỹ.

Under this perturbation, finding a solution to the system of equations (9.3) means

finding ∆ỹ such that

D(ỹ +∆ỹ) = 0M ·N . (9.10)

The left-hand side can be expanded to first order in the perturbation as

D(ỹ +∆ỹ) ≈ D(ỹ) + S ·∆ỹ , (9.11)

where S is a (MN ×MN)-dimensional Jacobian matrix which encodes in its struc-

ture the coupling between adjacent state vectors (Appendix G). Under this expan-

sion, the original system of differential equations is finally reduced to an algebraic

linear system of equations for ∆ỹ,

S ·∆ỹ = −D(ỹ) . (9.12)

Solving Eq. (9.12) is a straightforward task for conventional computational software.

Upon obtaining∆ỹ(i) for some iteration (i), the perturbation is added to the original

state vector in order to seed the next iteration, i.e.

ỹ(i+1) = ỹ(i) +∆ỹ(i) . (9.13)

Starting from Eq. (9.5), the entire process is reiterated until, ideally, D(i′)(ỹ(i′)) = 0

for some iteration (i′). In practice, a convergence criterion has to be introduced,

such as

1

M ·N

M ·N∑
j=1

∣∣∣D(i)
j

∣∣∣ < c or 1

M ·N

M ·N∑
j=1

∣∣∣∆y(i)j

∣∣∣ < c (9.14)

for some convergence parameter c. The corresponding ỹ(i′) provides the solution to

Eq. (9.3) on the mesh.

The code developed for this work builds on the preexisting Mathematica im-

plementation of Ref. [175], in turn inspired by a Matlab version developed for the
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work in Ref. [176]. One aspect of the code which shall not remain uncommented

is the imposition of boundary conditions on the interval [0,∞]. It is possible to

compactify the solution domain by an appropriate reparametrization of the inde-

pendent variable; thus, the boundary conditions on Eqs. (5.21) at infinity can be re-

stated in computationally accessible terms. However, under such typically non-linear

reparametrizations, the uniformity of the mesh is lost. This becomes problematic

upon interpolation and integration of the mesh solutions, as linear interpolations can

become too rough and higher order interpolations are found to introduce unphysical

artifacts. The issue may be averted by choosing a high enough mesh density – at

the cost of drastical increases in the computational complexity, with S scaling as

O(M2). As a compromise solution, all sphaleron equations in this work are solved on

finite, uniformly discretized domains. The appropriateness of this approach relies on

a fast convergence of the solutions; in the case of Eqs. (5.21), this is well supported

by Fig. 5.3. An overall sanity check was carried out by calculating the sphaleron

energy in the tree-level SM at different values of λ/g22 and comparing the results to

benchmarks in Ref. [55]. As Fig. 9.1 shows, results slightly depend on the length

ξmax of the solution domain as well as on the mesh density. Maximal discrepancies

of ∼ 6% are noted for values of λ/g2 at which the relaxation method is particularly

ill-behaved on account of numerical effects.

Figure 9.1: Sphaleron energies in the tree-level SM for different values of λ/g22 . The red mark-
ers represent the benchmark points of Ref. [55]. The red lines mark the energy at λ/g22 ≈ 0.3,
approximately the tree-level SM value [122]. Missing points did not converge.
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Chapter 10

Inert Doublet Model

An important class of natural BSM scenarios is provided by multi-doublet exten-

sions of the Higgs sector. The simplest such scenario is the inert doublet model,

which consists of just one additional exotic SU(2)L doublet both decoupled from

the fermions and presenting a vanishing VEV at zero temperature [174]. Just like

the two-Higgs doublet model (2HDM) – its more general counterpart –, the IDM

possesses a number of features which render it an attractive model to study. Part

of the allure lies in the additional scalars and pseudoscalars it supplies, which have

been touted as dark matter (DM) candidates. Furthermore, the inertness of the

second doublet largely enforces standard EW physics at zero temperature, thus rec-

onciling known phenomenology with the landscape of possibilities arising at high

energies. As pertains to this work, the model crucially presents non-trivial phase

transition dynamics and thus a wide playground for EWBG. As recent studies have

shown, the realization of both a correct DM relic abundance and a strong first-order

EWPhT is highly constrained but still feasible within selected regions of parameter

space [127, 149, 174, 177–181]. It thus becomes imperative that the condition for

a SFOPhT be revisited as a means of refining the search for viable sets of model

parameters.

10.1 The model

This chapter contemplates the EW Lagrangian

LIDM
EW

def
= LSM

kin

∣∣∣
Φ=Φ1

+ LSM
Yuk

∣∣∣
Φ=Φ1

+ (DµΦ2)
†(DµΦ2)− Veff(Φ1,Φ2) . (10.1)

The structure of (10.1) is fundamentally SM-like: LSM
kin and LSM

Yuk are the SM kinetic

and Yukawa terms seized from Chapter 2, each featuring the SM-like Higgs doublet
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Φ1. Additionally, the IDM counts a second SU(2)L doublet Φ2. In both standard

notation (cf. Refs. [149, 160]) and unitary gauge, the doublets are expressed as

Φ1 =

(
φ+

(h+ iφ)/
√
2

)
, Φ2 =

(
H+

(H + iA)/
√
2

)
, (10.2)

with the standard Higgs boson h, the new scalars H, H±, the Goldstone bosons φ,

φ± and the pseudo-scalar A. The proposed tree-level potential consists of two SM-

inspired sectors to which interaction terms between the Higgs doublets are added

[149],

Vtree(Φ1,Φ2) =µ
2
1|Φ1|2 + µ2

2|Φ2|2 + λ1|Φ|4 + λ2|Φ2|4

+ λ3|Φ1|2|Φ2|2 + λ4|Φ†
1Φ2|2 +

λ5
2

[(
Φ†

1Φ2

)2
+ h.c.

]
.

(10.3)

Both h and H are treated as dynamic degrees of freedom which eventually attain

their VEVs 〈h〉 = v1 = vSM
EW and 〈H〉 = v2 = 0. All other fields are assumed to

vanish when evaluated at the vacuum. Correspondingly, the tree-level potential in

terms of its degrees of freedom boils down to

Veff(h,H) =
µ2
1

2
h2 +

µ2
2

2
H2 +

λ1
4
h4 +

λ2
4
H4

+
λ3
4
h2H2 +

λ4
4
(hH)2 +

λ5
2

[
1

4
(hH)2 + h.c.

]
.

(10.4)

Unlike general 2HDM scenarios, the IDM imposes a discrete Z2 symmetry under

which alone Φ2 is odd. Under this symmetry, the lightest Z2-odd particle is rendered

stable and thus a DM candidate. Furthermore, the couplings will all be real, and so

this model on its own provides no new source of CP violation [149, 174].

10.2 Construction of the effective potential

The analysis featured in this chapter is motivated by the recent results of Refs.

[127, 149]. In order to build on them, the model was set up by closely adapting the

prescriptions laid out therein. The present section outlines the shared construction

of the effective potential and the parameter constraints implemented throughout.
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10.2.1 Parametrization

First of all, the quartic couplings λ3, λ4 and λ5 will be absorbed into [149]

λ345
def
= λ3 + λ4 + λ5 (10.5)

λ̄345
def
= λ3 + λ4 − λ5 = λ345 − 2λ5 . (10.6)

Secondly, the masses of the new particles associated to the Higgs doublets will be

used as input parameters for the analysis. At tree-level, the scalar and pseudoscalar

mass matrices, evaluated in the unitary gauge at the EW minimum (h,H) = (v, 0),

present the mass-square eigenvalues

m2
h = 2λ1v

2 m2
H =

1

2
(2µ2

2 + λ345v
2) (10.7)

m2
φ± = 0 m2

H± =
1

2
(2µ2

2 + λ3v
2) (10.8)

m2
φ = 0 m2

A =
1

2
(2µ2

2 + λ̄345v
2) . (10.9)

Consequently, the quartic couplings λ3, λ4 and λ5 can be completely removed via

λ3 = λ345 + 2
m2

H± −m2
H

v2
, λ4 =

m2
A +m2

H − 2m2
H±

v2
, λ5 =

m2
H −m2

A

v2
. (10.10)

In summary, the model admits a parameter transformation

{µ1, µ2, λ1, λ2, λ3, λ4, λ5} → {v, λ2, λ345,mh,mH ,mH± ,mA} (10.11)

with fixed v ≈ 246GeV and mh ≈ 125GeV which will be exploited hereinafter.

10.2.2 Zero-temperature, field-dependent masses

The full, one-loop effective potential is constructed in line with the prescriptions

of Chapter 8. The zero-temperature, one-loop corrections are provided by the CW

potential (8.1), which features a dependence on the field-dependent masses of the

model. Fermion masses in the IDM are inherited from the SM, as fermions com-

pletely decouple from the second doublet. The mass squares are thus

m2
f (h,H) =

y2f
2
h2 . (10.12)
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This analysis restricts the fermion content to the top quark t. The zero-temperature

mass squares of the gauge bosons γ, W± and Z in turn are [149]

m2
γ (h,H) = 0 (10.13)

m2
W (h,H) =

g22
4
(h2 +H2) (10.14)

m2
Z (h,H) =

g21 + g22
4

(h2 +H2). (10.15)

The model is complemented by the masses of the different scalars and pseudoscalars.

Their field-dependent mass matrices1 are given as [149]

M2
s (h,H) =

(
3λ1h

2 − λ1v
2 + λ345

2
H2 hHλ345

hHλ345 3λ2H
2 + 1

2
λ345h

2 + µ2
2

)
(10.16)

M2
p (h,H) =

(
λ1h

2 − λ1v
2 + 1

2
λ̄345H

2 hHλ5
hHλ5 λ2H

2 + 1
2
λ̄345h

2 + µ2
2

)
(10.17)

M2
c (h,H) =

(
λ1h

2 − λ1v
2 + 1

2
λ3H

2 1
2
hH(λ4 + λ5)

1
2
hH(λ4 + λ5) λ2H

2 + 1
2
λ3h

2 + µ2
2

)
. (10.18)

Their diagonalization delivers the field-dependent mass squares at zero temperature,

which coincide with the mass squares (10.7) – (10.9) when evaluated at the vacuum.

10.2.3 Counterterm potential

Renormalization is completed by introducing the counterterm potential [149]

VCT (h,H) = δµ2
hh

2 + δµ2
HH

2 + δλ1h
4 . (10.19)

Its coefficients are fixed by a set of renormalization conditions chosen such as to

preserve the zero-temperature EW vacuum and the tree-level masses mh and mH

after the CW corrections have been accounted for. It is pointed out that such renor-

malization schemes are often challenging: second and higher order derivatives of the

Goldstone contributions to the CW potential (8.1) are dangerously ill-defined at the

vacuum. A strict treatment of such pathological terms requires the introduction

of IR cutoffs. Refs. [182, 183] provide a systematic procedure for renormalization

conditions featuring up to second order derivatives, which was successfully applied

1s: scalars – p: pseudoscalars – c: charged scalars.
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to the recent analyses of Refs. [149, 160] and therefore also followed here. Its renor-

malization conditions impose

∂VCT(h,H)

∂h

∣∣∣∣
vev

!
= − ∂VCW(h,H)

∂h

∣∣∣∣
vev

(10.20)

∂2VCT(h,H)

∂h2

∣∣∣∣∣
vev

!
= −

(
∂2ṼCW(h,H)

∂h2
+

1

32π2

∑
i=φ,φ±

ni

(
∂ m2

i (h,H)

∂h

)2

lnm
2
IR
Q2

)∣∣∣∣∣∣
vev

(10.21)

∂2VCT(h,H)

∂H2

∣∣∣∣∣
vev

!
= −

(
∂2ṼCW(h,H)

∂H2
+

1

32π2

∑
i=φ,φ±

ni

(
∂ m2

i (h,H)

∂h

)2

lnm
2
IR
Q2

)∣∣∣∣∣∣
vev

.

(10.22)

Notably, the scheme requires the CW potential ṼCW on the right-hand side of Eqs.

(10.21) and (10.22) to be evaluated without its Goldstone modes. The latter are

added by hand, modulated by the logarithm of an IR cutoff set to m2
IR = m2

h at the

vacuum. In return for curing the IR illness of the counterterm scheme, and as Ref.

[149] points out, this set of conditions leaves the masses mA,H± as loop-corrected

parameters, while the couplings λ2 and λ345 in turn become running quantities. A

refined and simultaneously IR divergence-free renormalization is left for future work.

10.2.4 Thermal mass corrections

The Debye masses of the scalars and pseudoscalars emerge as eigenvalues of the

thermal mass matrices

M̃2
i (h,H, T ) = M2

i (h,H) + Π (T ) (10.23)

with i = {s, p, c}. For all three matrices, the components of Π(T ) are given by

[149, 160]

Π11 (T ) =

(
6y2t +

3

2
g21 +

9

2
g22 + 12λ1 + 4λ3 + 2λ4

)
T 2

24
(10.24)

Π22 (T ) =

(
3

2
g21 +

9

2
g22 + 12λ2 + 4λ3 + 2λ4

)
T 2

24
(10.25)

Π12 (T ) = Π21 (T ) ≈ 0 . (10.26)
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The thermal self-energies of the gauge boson modes are

ΠL
W± (T ) = ΠL

W 3 (T ) = 2g22T
2 ΠT

W± (T ) = ΠT
W 3 (T ) = 0 (10.27)

ΠL
B (T ) = 2g21T

2 ΠT
B (T ) = 0 (10.28)

Thus, the mass square of the longitudinal W boson modes becomes

m̃2
W±

L
(h,H, T ) =

g22
2
(h2 +H2) + 2g22T

2 . (10.29)

For the longitudinal photon and Z boson modes, the thermal corrections deliver

m̃2
ZL,γL

(h,H, T ) =
1

8
(g21 + g22)(h

2 +H2) + (g21 + g22)T
2 ±∆ (10.30)

with

∆2 =
1

64
(g21 + g22)(h

2 +H2 + 8T 2)2 − g21g
2
2T

2(h2 +H2 + 4T 2) . (10.31)

The thermal mass corrections will be applied in line with the standard truncated

full dressing procedure of Eq. (8.11), since – as noted by Ref. [149] – the high-

temperature assumption for the alternative treatment may not hold in the region

studied. The full thermal effective potential is thus

Veff (h,H;T ) = Vtree (h,H) + VCW (h,H) + VCT (h,H) + V th
1 (h,H;T ) , (10.32)

with the replacement m2
i (h,H) → m̃2

i (h,H) = m2
i (h,H) + Πi(T ) in VCW and V th

1 .

10.3 Constraints on the model parameters

As has been pointed out, Refs. [127, 149] have highlighted specific regions of pa-

rameter space. Within these, it is possible to account for both a SFOPhT as well

as a correct DM relic abundance. The present work aims to shed some light on

these regions in the hopes of refining the search for viable parameter sets. This goal

has motivated all parameter choices of the later analysis; the ranges considered are

showcased in Table 10.1. The last parameter appearing in the table is the mass

splitting, defined as

∆m
def
= mA,H± −mH . (10.33)

The mass splitting has been shown to be a convenient input parameter in studies
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Table 10.1: Parameter space used throughout this chapter, on the basis of Refs. [127, 149].
The upper bounds on mH± and mA follow from the bound considered for ∆m, which was chosen
such as to generously cover the regions explored by the mentioned references while remaining well
within the EW scale. The lower bound on mH± is motivated by reassessments of LEP data with
regards to new physics [149, 184–186]. The same analyses also exclude the intersection of regions
mA > 100GeV ∪mA −mH < 8GeV.

Parameter space
λ2 λ345 mH [GeV] mA [GeV] mH± [GeV] ∆m [GeV]

≤ 10 [−0.01, 0.01] [55, 75] ≤ 675 [70, 675] ≤ 600

of the EWPhT, as it allows to easily cover heterogeneous phase transition regimes

(see e.g. Refs. [127, 149, 160, 174, 187]). The underlying assumption when using

∆m throughout this work is mA = mH± , which is very restrictive. Nonetheless, ∆m

will be a useful asset.

Parameter selections within the ranges considered were examined for a number

of theoretical and experimental constraints outlined in the following (cf. Refs. [127,

149]).

10.3.1 Theoretical constraints

Boundedness and vacuum stability

Firstly, in order to ensure a charge-conserving ground state,

λ4 − |λ5| < 0 (10.34)

is required. Furthermore, as the behaviour of the potential at large field values is

dictated by its quartic terms, stability is enforced by restricting their parameters

such that [149, 181]

λ1,λ2 > 0 , λ3 > −2
√
λ1λ2 , λ3 + λ4 − |λ5| > −2

√
λ1λ2 . (10.35)

Perturbative unitarity

Perturbative unitarity is imposed on the S matrix for all processes involving scalars.

This requires all of its eigenvalues to satisfy

|wl| ≤ 8π . (10.36)

Details on the S matrix can be inferred from Appendix H and Ref. [181].
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10.3.2 Experimental constraints

Suppression of exotic gauge boson decays

In conformity with Refs. [149, 181], decays of the gauge bosons into H, H± or A

shall be kinematically excluded by requiring

mA +mH± > mW± mH +mH± > mW± (10.37)

mA +mH > mZ 2mH± > mZ . (10.38)

Suppression of exotic Higgs decays

In the SM, the total Higgs decay width is estimated as [188]

ΓSM
h = 4.07MeV+4.0%

−3.9% . (10.39)

Exotic and so far unobserved decays of the Higgs h into the new state H should

widen ΓSM
h by [127, 149]

Γinv
h =

λ2345m
2
W±

8πg22mh

√
1− 4

(
mH

mh

)2

. (10.40)

The invisible decay width Γinv
h is restricted by upper limits on the branching ratio

Binv
h

def
=

Γinv
h

ΓSM
h + Γinv

h

(10.41)

claimed independently by the ATLAS and CMS collaborations at 95% confidence

level [189, 190]. Parameter sets in this analysis were required to meet the limit

Binv
h < 0.26 of the former.

Oblique parameters S, T and U

Overall, in order to satisfy experimental bounds, the effects of exotic physics on

EW precision observables need to be small [191]. This is quantified by the Peskin-

Takeuchi observables (e.g. Ref. [192]). Parameter sets making it into the final anal-

ysis all satisfy the bounds [191]

S = 0.06± 0.09 (10.42)

T = 0.10± 0.07 (10.43)

with the fit constraint U = 0. The parametrizations of S and T can be found in

Appendix H.
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10.4 Construction of the electroweak sphaleron

The generic two-doublet case presents the energy functional [153, 193]

E [W a
µ ,Φ1,Φ2] =

∫
d3x

[
1

4
W a

ijW
aij + (DiΦk)

†(DiΦk) + ∆V T
eff(Φ1,Φ2)

]
, (10.44)

with a, i, j = 1, 2, 3 and k = 1, 2. In order to evaluate the energy with respect to

the absolute vacuum of the theory at temperature T , and thus in agreement with

the implicit normalization of Eq. (5.3), the quantity

∆V T
eff(Φ1,Φ2)

def
= Veff(Φ1,Φ2, T )− Veff(Φ1,Φ2, T )

∣∣
vev (10.45)

is introduced. Furthermore, in order to impose a radial gauge condition, spherical

coordinates are favored anew. This motivates the use of a standard radial coordinate

r, which can be made dimensionless via

ξ
def
= g2 rΩ with Ω

def
=
√
v21 + v22, (10.46)

the quantities v1 = v1(T ) and v2 = v2(T ) being the temperature-dependent VEVs of

the fields h and H. Following Chapter 5 and the derivation for the general 2HDM

case in Ref. [153], the spherically symmetric field ansatz

Φ1 (ξ, θ, φ;µ) = h1(ξ) Φ
∞ (θ, φ;µ) +

(
1− h1(ξ)

) v1√
2

(
0

e−iµ cosµ

)
(10.47)

Φ2 (ξ, θ, φ;µ) = h2(ξ) Φ
∞ (θ, φ;µ) +

(
1− h2(ξ)

) v2√
2

(
0

e−iµ cosµ

)
(10.48)

Wξ (ξ, θ, φ;µ) = 0 (10.49)

Wθ (ξ, θ, φ;µ) = f(ξ)W∞
θ (θ, φ;µ) (10.50)

Wφ (ξ, θ, φ;µ) = f(ξ)W∞
φ (θ, φ;µ) (10.51)

is used, where the loop Φ∞ is defined according to Eq. (5.12) with the loop parameter

µ ∈ [0, π]. The fields h and H

h(ξ)
def
= v1 h1(ξ) H(ξ)

def
= v2 h2(ξ) (10.52)

are thus treated as the sole dynamical fields, while all other fields in the doublets

are consistently set to zero. For µ = π/2, and omitting the ξ-dependences for the
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sake of clarity, the ansatz delivers the energy functional

E [f, h1, h2] =
4πΩ

g2

∫ ∞

0

dξ

{
4

(
df

dξ

)2

+
8

ξ2
f 2(1− f)2 +

ξ2

2

v21
Ω2

(
dh1
dξ

)2

+
ξ2

2

v22
Ω2

(
dh2
dξ

)2

+

(
v21
Ω2
h21 +

v22
Ω2
h22

)
(1− f)2 +

ξ2

g22Ω
4
∆V T

eff(h1, h2)

}
.

(10.53)

In conformity with Eq. (10.45), the quantity ∆V T
eff(h1, h2) is to be understood as

∆V T
eff(h1, h2) = Veff(v1 h1, v2 h2, T )− Veff(v1, v2, T ) . (10.54)

The radial functions f , h1 and h2 need to satisfy

lim
ξ→0

f(ξ) = 0 lim
ξ→0

h1(ξ) = 0 lim
ξ→0

h2(ξ) = 0 (10.55)

lim
ξ→∞

f(ξ) = 1 lim
ξ→∞

h1(ξ) = 1 lim
ξ→∞

h2(ξ) = 1 . (10.56)

The static equations for the generic two-doublet case are obtained as

ξ2
∂2f

∂ξ2
= 2f(1− f)(1− 2f)−

(
v21
4Ω2

ξ2h21 +
v22
4Ω2

ξ2h22

)
· (1− f) (10.57)

∂

∂ξ

(
ξ2
∂h1
∂ξ

)
= 2h1(1− f)2 +

ξ2

g22v
2
1Ω

2

∂

∂h1
∆V T

eff(h1, h2) (10.58)

∂

∂ξ

(
ξ2
∂h2
∂ξ

)
= 2h2(1− f)2 +

ξ2

g22v
2
2Ω

2

∂

∂h2
∆V T

eff(h1, h2). (10.59)

However, a special scenario arises whenever one of the doublets is evaluated at 〈Φl〉 =

0 and thus vl = 0. In such cases, the kinetic terms in Eq. (10.53) corresponding

to the degree of freedom of the doublet φl all vanish, which reduces the system of

equations to

ξ2
∂2f

∂ξ2
= 2f(1− f)(1− 2f)− 1

4
ξ2h2k · (1− f) (10.60)

∂

∂ξ

(
ξ2
∂hk
∂ξ

)
= 2hk(1− f)2 +

ξ2

g22v
4
k

∂

∂hk
∆Veff(hk, 0) (10.61)

for k ∈ {1, 2}, k 6= l. The boundary conditions for the remaining radial functions

correspond to (10.55) – (10.56).

The sphaleron energy is obtained by evaluating Eq. (10.53) at the solutions f ,

h1 and h2 to the static equations. Furthermore, as long as no mixed kinetic Higgs

terms appear in the Lagrangian, U(1) corrections to the sphaleron energy are easily

accounted for in generic multi-Higgs-doublet scenarios: each doublet gives rise to a

term (5.22). For any inert doublets, such terms automatically result in zero.
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10.5 Investigation of the decoupling criteria

10.5.1 Selection of benchmark points

Ref. [149] reports the dominance of a one-step phase transition pattern which has the

doublet Φ2 remain inert throughout the entire process, i.e. it presents a zero VEV in

both EW phases at all temperatures. This pattern features first- and second-order

processes alike, of which only the former will be of interest. Selected benchmark

points (BMPs) displaying such FOPhT are kept in Table 10.2 for future reference.

Furthermore, Ref. [149] crucially remarks the existence of narrow but well-defined re-

gions of parameter space allowing for two-step phase transitions, with a first instance

of symmetry breaking solely along the axis of the second Higgs field. Although a

study of the transition strength in such cases should be interesting, the tentative

scans of parameter space carried out with CosmoTransitions did not find suitable

two-step phase transitions. It is pointed out that comprehensive scans of the space

spanned by Table 10.1 are beyond the scope of this work; nonetheless, the scan

setup was chosen such as to accurately resolve the narrow regions in question – to

no avail. Accordingly, the following analysis of the sphaleron decoupling criterion is

restricted to the one-step pattern available.

Table 10.2: BMPs used for a first characterization of the sphaleron.

BMP1 BMP2 BMP3
PT pattern 1-step 1-step 1-step
mH [GeV] 65 70 55

mA [GeV] 340 364 400

mH± [GeV] 340 364 400

λ2 0.0025 0.0025 1.5000

λ345 0.0050 −0.0050 −0.0030

E0 [GeV] 9055.01 9080.05 9073.80

Tn [GeV] 106.41 99.85 81.99

v1,n [GeV] 187.78 203.49 228.58

En [GeV] 6477.03 7167.86 8138.50

Tc [GeV] 111.23 104.95 95.11

v1,c [GeV] 168.51 188.79 211.44

Ec [GeV] 5726.6 6326.90 7404.13
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10.5.2 Characterization of the sphaleron

The BMPs of Table 10.2 provided first insights into the sphaleron. To this aim,

the sphaleron solutions to Eqs. (10.60)–(10.61) were obtained with the relaxation

algorithm introduced in Chapter 9. Resting on the phase transition pattern consid-

ered, the sphaleron solutions for the gauge and standard Higgs fields showcased in

Fig. 10.1 exhibit the physiognomy and convergence behaviour known from Chapter

5. In addition, the figure also displays the effects of temperature on the sphaleron:

whereas the continuous lines correspond to the sphaleron solution at zero tempera-

ture, the dotted lines showcase solutions obtained at the respective Tn, which were

obtained with CosmoTransitions. One observes that the lower Tn and T altogether,

the higher the radial field profile. This explains the contrast between the upper and

lower rows of the figure. In the case of BMP3, the phase transition occurs at a tem-

perature about 20GeV below those of BMP1 and BMP2, which results in nucleation

curves that closer resemble the zero-temperature profiles.

Figure 10.1: Exemplary sphaleron curves for the BMPs in Table 10.2. The continuous lines
correspond to the zero-temperature solutions of Eqs. (10.60)–(10.61), whereas the dotted lines
were obtained at the respective nucleation temperatures.
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This trend is symptomatic of a general temperature dependence which acts, in

particular, through the temperature-dependent VEV v1(T ). The sphaleron charac-

ter and its energy are ultimately pinned down by the evolution of v1(T ), as showcased

by Fig. 10.2. The sphaleron energies E(T ) were calculated from Eqs. (10.53) and

(5.22) on the basis of solutions to Eqs. (10.60)–(10.61) obtained at the corresponding

temperature. The thermal evolution of v1(T ) was tracked with CosmoTransitions.

The inertness of Φ2 in Eq. (10.53) on account of v2(T ) = 0 is stressed again for later

reference. The left-hand side plots hint at the close relation of E(T ) and v1(T ), for

which the evolution is displayed from the critical temperature all the way down to

zero temperature. This behaviour is the consequence of an approximate scaling law

for v1(T ) as given by Eq. (7.11). In view of the right-hand side plots of Fig. 10.2,

the validity of the scaling law is suggested for these BMPs. The proportionality is

not exact; however, it does coincide well for the BMPs displayed.

Figure 10.2: Left: Temperature-dependent evolution of the normalized vacuum expectation
values and sphaleron energies for BMP1 and BMP3 in Table 10.2. Right: Scaling of the U(1)-
corrected E(T ) with v1(T ). Cyan (green) points were obtained at Tn (Tc).
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10.5.3 SFOPhTs and sphaleron decoupling in the IDM

The preliminary case study of BMPs 1 and 3 suggests the validity of the approximate

scaling law (7.11) for v1(T ) in the IDM. This is the essential ingredient in reducing

the unwieldy σ-criterion to a more convenient condition on the order parameter

ξ = v1(T )/T for the transition pattern considered. Given the modest additional

structure of the IDM and the inertness of the second doublet in this process, the

canonical ξ & 1 should be safe. It is noted that in the derivation of this criterion,

the only free scale featured in Eq. (7.12) aside from vi and Ti is that of E(0). As can

be inferred from Table 10.2, for the selected BMPs this scale is of 9TeV and thus

tallies with that of ESM(0) as suggested in the literature (see e.g. Ref. [30]) and Fig.

9.1. For this reason, a criterion ξ & O(1) can be expected.

Nonetheless, this work sets out to optimize this criterion by comparing and con-

trasting it to the seminal σ-criterion (7.10). A non-trivial assumption that underlies

the following analysis concerns the sphaleron-related parameters which appear in

Eq. (7.7) and define the range of the σ-criterion. The SM values of Appendix F will

be assumed for them, since – to the knowledge of the author – their calculation in

exotic models is largely missing to this day. Relying on the modest extension that

the IDM constitutes, the large bounds chosen for κ and the sub-leading logarithmic

impact of these parameters on Eq. (7.7), this work follows Refs. [122, 153, 155] in

assuming that the canonical σ-criterion should remain reliable.

The first part of this analysis proceeded as an extension of the BMP case study:

in order to track ξ, BMPs 1 and 3 of Table 10.2 were used as seeds for two one-

dimensional scans through parameter space along∆m within the ranges indicated by

Table 10.1. This choice was motivated by the dependence of three quartic couplings

on the masses mA, mH± and mH via Eqs. (10.10). Under the degeneracy condition

of mA and mH± , it is possible to recast three quartic couplings in terms of ∆m and

thus to maximize the impact of a single parameter on the phase transition. This

simple reparametrization permits to cover heterogeneous regions of parameter space

in a simple manner, as shown by Ref. [149]. In particular, ∆m was found to have

a greater impact on the evolution of ξ as compared to the remaining independent

parameters2, λ2 and λ345, thus justifying the approach.
2This holds especially for λ345 as a result of the highly constrained parameter space considered.
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A basic understanding of the phase transition strength ξ is provided by prelim-

inary results of these scans. Fig. 10.3 displays the evolution of T and v1(T ) at the

phase transition, while Fig. 10.4 showcases the corresponding development of the

phase transition strength. The scans were carried out at criticality and nucleation;

the relevant quantities are correspondingly deemed Ti, vi, ξi for i ∈ {c, n}. The first

observation concerns the temperatures and VEVs: beyond the range of low ∆m,

the Tc are markedly higher and the vc lower than their counterparts at nucleation.

These differences increase further as ∆m rises and can have a sizeable impact on

the evaluation of ξ. For BMPs 1 and 3, marked in red (green) for evaluation at Tn
(Tc), the effects are moderate: the greatest difference is obtained for BMP3, with

|ξn − ξc| ≈ 0.6. However, the stark decrease of Tn with ∆m, as opposed to the more

moderate behaviour of Tc, vc and vn, results in a rapidly augmenting |ξn − ξc|. The

evolution of ξc in Fig. 10.4 is rendered overall flatter than that of ξn. As a result,

the phase transition strength ξc will generally be weaker than its counterpart ξn.

Figure 10.3: Evolution of Ti and v1(Ti) evaluated at criticality and bubble nucleation as a
function of the mass splitting ∆m. The green and red points mark the BMP in the respective
evaluation. The cutoff towards large ∆m stems from the requirement of correct minimality of the
model at zero temperature. Left: Containing BMP1. Right: Containing BMP3.
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Figure 10.4: Evolution of the standard phase transition strength ξi evaluated at criticality and
bubble nucleation. The green and red points mark the BMP in the respective evaluation.

Under the standard requirement that ξ & 1, the lower bound on the scan param-

eter ∆m is thus consistently shifted upwards when evaluated for ξc. For the scans

featured in Fig. 10.4, this shift amounts to 6− 8GeV with respect to the parameter

bound set by ξn & 1. Additionally, an evaluation of the phase transition strength

ξc spuriously extends the range available for a SFOPhT towards large values of the

scan parameter: it includes regions of ∆m which feature no bubble nucleation as

judged by Eq. (6.24) in Chapter 6 (i.e. beyond approximately ∆m & 370−380GeV

for the scans displayed). Altogether, evaluation of the phase transition strength at

criticality shifts the bounds available for a SFOPhT and thus leads to systematic

misjudgements of the parameter space available for EWBG.

Another point regarding the independent issue of nucleation needs to be addressed

on account of the right-hand side plots of Figs. 10.3 and 10.4. As the left-hand side

plots, they are cut off to the right by the requirement that the EW vacuum be

the absolute potential minimum at zero temperature. This includes the purple

sections of the curves for Tc, vc and ξc. In these regions, CosmoTransitions also

detects a Tc for a transition to the correct vacuum which, however, does not come

to pass. Instead, a SOPhT below Tc is reported which eventually lands on a wrong

phase at zero temperature – despite the EW minimum being the true vacuum.

This phenomenology shows that standard evaluations of phase transitions at the

critical temperature fail to capture the finer details of transition dynamics on a

fundamental level. Although the importance of this realization goes beyond EWBG,

it suggests inherent flaws to standard evaluations of the phase transition strength
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in the literature: the widely missing checks for successful nucleation are imperative.

This work is not the first one to remark the importance of nucleation and Tn in

the context of EWBG (see e.g. Ref. [145]), and previous studies of the IDM such as

Ref. [174] have already implemented checks for nucleation in their framework. To

the best knowledge of the author, however, a thorough qualitative and quantitative

assessment of the effects of such checks on the phase transition strength ξ as in Fig.

10.4 has been pending in the context of the IDM.

The differences between evaluations of ξ at Tc and Tn are largely passed on to

evaluations of the seminal decoupling condition σ, which were performed for the

same scans of ∆m. As can be inferred from Fig. 10.5, the bounds3 on the scan

parameter ∆m set by σc are consistently higher than those set by σn. In particular,

the more stringent requirement that σc > 42.8 (upper edge of the orange stripes)

projects onto a bound on ∆m about 11GeV more severe than the bound set by

the σn > 42.8 in both scans. More fundamentally, and as pertains to the nature of

this work, the modesty of the ξ-criterion for a SFOPhT is hinted at in comparison

to Fig. 10.4. Irrespective of evaluation at criticality or nucleation, the σ-criterion

reduces the available parameter space at the lower end of the spectrum of ∆m for

the cases studied. For instance, for the left-hand side plots of Figs. 10.4 and 10.5,

one can track shifts of between 7− 30GeV depending on the bound for σ.

Figure 10.5: Evolution of σi at criticality and bubble nucleation. Left: Scan containing BMP1.
Right: Scan containing BMP3. In red (orange), the exclusion limit as set by the lower (upper)
bound of σi. Red (green) points mark σn (σc) for the respective BMP.

3Also, note the reduced plotting range as compared to previous figures. Calculations of E(T )

and σ can be spoiled by finite-mesh effects at low ∆m, as explained in Appendix H.1.3.
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Overall, two preliminary conclusions can be drawn. Firstly, in studies of SFOPhTs,

the criteria σc and ξc need to be complemented by checks for nucleation and are in-

stead best evaluated at Tn altogether. This should serve to avoid both an overesti-

mation and a systematic misinterpretation of the parameter space available for such

transitions. Secondly, the σ-criterion appears to be slightly more exclusive than the

ξ-criterion. The corrections it provides are arguably modest; nonetheless, they can

serve to refine the bound on ξ in what could constitute a procedural improvement

to studies of the phase transition in the model.

In order to estimate the shift in the canonical ξ-condition, both criteria are plotted

against each other. For the sake of completeness, this is first done in Fig. 10.6 for

the benchmark scans considered so far. The upper row showcases the basic relation

between ξi and σi for i ∈ {c, n}. The lower row displays the dominant contribution

to σi, the quotient E(Ti)/Ti, which sources the overall linear scaling of σi with ξi.

Figure 10.6: Upper row: Comparison of the criteria on σi and ξi for a SFOPhT along the
previous scans of ∆m. The shaded region in the lower left corners marks the exclusion zone of
the standard ξ & 1. Lower row: Scaling behaviour of E(Ti)/Ti with ξi along the previous scans
of ∆m. In both rows, the red (green) points correspond to the BMPs as evaluated at Tn (Tc),
respectively. The purple regions from ealier plots were not included.
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However, the proportionality in the σ-ξ relation is spoiled for ξi . 1 as the sub-

leading logarithmic contributions to Eq. (7.9) become sizeable. Specifically, it is the

term proportional to log(ξi) that raises σi for low values of ξi.

On a separate note, Fig. 10.6 shows E(Ti)/Ti and σi to possess the same scaling

with ξi irrespective of evaluation at criticality or nucleation. The values of σ and

ξ for single points will still vary between both temperature schemes, as shown by

the relative shift of the red and green points. The phase transition will always

be stronger when evaluated at Tn, in agreement with the analysis so far, and thus

suggest better prospects of a SFOPhT. However, the updated bounds of the ξ-

criterion, determined as the abscissae at which the curves cross the σ-bounds, will

be comparable for both temperature schemes.

The improved bounds on the ξ-criterion are determined on the basis of a random

sample of 800 points within the space of parameters of Table 10.1, unconstrained by

the degeneracy condition on mA and m±
H and evaluated at Tn. Fig. 10.7 showcases

the scaling of E(Tn)/Tn, the dominant contribution to σn, while Fig. 10.8 presents

σn itself. The color schemes of these plots provide some interesting insights. For

instance, many sample points present E(Tn) at or above the 9TeV scale of the

zero temperature SM sphaleron according to Fig. 10.7. As the color scheme of

Fig. 10.8 reveals, such high sphaleron energies are linked to temperature-dependent

VEVs close to the zero-temperature value. More fundamentally, a comparison of

the schemes suggests a linear scaling between E(Tn) and v1,n across the sample.

Figure 10.7: Scaling of E(Tn)/Tn in the IDM for a random sample of 800 points. The sphaleron
energy at Tn appears color-coded.
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Figure 10.8: Comparison of the criteria on σn and ξn corresponding to a random selection of
800 points within the space of parameters of Table 10.1. The condition mA = mH± is lifted. The
color code of the points showcases the normalized nucleation VEVs.

Fig. 10.8 ultimately compares the criteria on σn and ξn. As can be deduced from

the magnification in Fig. 10.8, the standard condition that ξ & 1 falls slightly short,

as the curve implied by the data does not manage to cross any of the bounds on σ

within the shaded regions. Instead, it suggests the formal condition (7.10) on σn to

be satisfied for

ξn & (1.05− 1.30) . (10.62)

The minimal dispersion of the sample points along slices of constant σ is noted. It

is recalled that the parameter space considered in Table 10.1 is very reduced for

selected parameters; in addition, the experimental constraints imposed throughout

section 10.3 further limit the variability of the final data points. In view of the

sampling procedure, and noting that parametric dependences of ξn on the sampling

parameters seem to be well reproduced by σn as suggested by Figs. 10.4 and 10.5,

the negligible horizontal dispersion in the σ − ξ relation should be a natural conse-

quence. This could be put to the test in another random scan by either enlarging

the parameter space of 10.1 or dropping some of the constraints imposed – which

was beyond the scope and goals of this work. At any rate, the minimal dispersion

renders the uncertainty on σ – the height of the orange stripe in Fig. 10.8 – the

predominant uncertainty factor in the final result. In light of the state of the art in

multi-model calculations of the fluctuation determinant κ, which sources the bounds
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on σ, this final uncertainty is at present irreducible.

To the knowledge of the author, this is the first analysis of the sphaleron decou-

pling criterion in the IDM and thus eludes direct comparisons to equivalent results.

A comparable reference value may lie in an analysis of the decoupling condition in

the general 2HDM case. On the basis of a BMP case study at the critical tem-

perature and in an approach equivalent to assuming the upper limit on σc, Ref.

[187] suggests the improved condition ξc & 1.2. This lies well within the bounds

of the present work, yet falls short of the upper limit herein proposed. Ultimately,

within the bounds on σn, the result (10.62) heightens the standardized ξ-criterion by

5%− 30%. The increased severity cannot, however, be unequivocally attributed to

the effects of new physics and instead largely agrees with the more nuanced bounds

suggested in Eq. (7.15) in a SM context.
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Chapter 11

Real scalar singlet extension

The class of real scalar singlet extensions of the Higgs sector is one of the workhorses

in the study of physics beyond the SM. Albeit attractive as toy models due to

their largely trivial gauge structure, scalar singlet extensions do feature a rich phe-

nomenology that may provide comprehensive solutions to a number of problems

plaguing the SM (cf. Ref. [194–196]). One of their greatest assets are their non-

trivial phase transition dynamics, which have prompted ample research in the field

of EWBG (see e.g. Refs. [146, 148, 197, 198]). Consequently, the EW sphaleron

in singlet scalar extensions has garnered much attention over the years, and its

behaviour has been well studied at the zero and critical temperatures (cf. Refs.

[145, 156, 199, 200]). In this work, the sphaleron decoupling condition will be re-

visited by taking advantage of a comparatively recent software development such

as CosmoTransitions, which permits to reevaluate the condition at the nucleation

temperature. A similar framework was implemented for a simplified study of the

sphaleron in Ref. [155]. The present analysis generalizes these procedures to the full

one-loop thermal effective potential.

11.1 The model

The addition of a real-valued EW gauge singlet to the Lagrangian in Eq. (2.2) defines

LrSM
EW

def
=LSM

kin + LSM
Yuk + (∂µs)(∂

µs)− Veff(Φ, s) , (11.1)

with the Higgs doublet in unitary gauge [145]

Φ =

(
φ+

(h+ iφ)/
√
2

)
(11.2)

and the real scalar singlet field s. The elements LSM
kin and LSM

Yuk in Eq. (11.1) cover

the SM kinetic and Yukawa terms as introduced in Chapter 2, whereas the third
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term represents the kinetic contribution of the singlet. The interactions of the new

field with the SM content are mediated by the Higgs sector via portal couplings in

the effective potential Veff. At tree-level, it is given by

Vtree(Φ, s) = −µ2Φ†Φ+λ(Φ†Φ)2+
a1
2
Φ†Φs+

a2
2
Φ†Φs2+

b2
2
s2+

b3
3
s3+

b4
4
s4 , (11.3)

where the standard notation from Refs. [155, 194, 197] for the couplings is followed:

the ai describe couplings for Higgs-singlet mixing terms, the bi all remaining singlet

self-couplings. The model will be assumed to possess two field degrees of freedom:

the dynamic Higgs field that attains the VEV in the symmetry broken phase, i.e.

〈h〉 = v, and the new scalar, which acquires a VEV as 〈s〉 = vs. In terms of h and

s, the tree-level potential is given by

Vtree(h, s) = −1

2
µ2h2 +

1

4
λh4 +

a1
4
h2s+

a2
4
h2s2 +

b2
2
s2 +

b3
3
s3 +

b4
4
s4 . (11.4)

The potential in (11.3) is the most general, renormalizable potential up to an ad-

ditional tadpole term b1s. The model can be shown to be equivalent under both

formulations, as the tadpole term can be sourced by a constant shift of the singlet

field [197]. Ultimately, such a change of field coordinates has no effect on the physics

and is merely a convenience which will not be followed in the coming analysis. Fi-

nally, it is pointed out that a subclass of Z2-symmetric models occurs for vanishing

a1 and b3.

11.2 Construction of the effective potential

11.2.1 Zero-temperature, field-dependent masses

Scalar singlet extensions of the EW sector generically inherit the SM fermion and

gauge boson masses. Consequently, the fermion mass squares are

m2
f (h, s) =

y2f
2
h2 . (11.5)

For the sake of consistency with Chapter 10, only the top quark t will be accounted

for. The squared masses of the gauge bosons W± and Z in turn are

m2
W (h, s) =

g22
4
h2 m2

Z (h, s) =
g21 + g22

4
h2 . (11.6)
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The scalar singlet field becomes present in the Higgs-singlet mass matrix

M2
s (h, s) =

(
m2

hh m2
hs

m2
sh m2

ss

)

=

(
3λh2 − µ2 + 1

2
a1s+

1
2
a2s

2 1
2
a1h+ a2hs

1
2
a1h+ a2hs

1
2
a2h

2 + 3b4s
2 + 2b3s+ b2

)
.

(11.7)

The matrix (11.7) can be recast as a diagonal matrix with the two mass square eigen-

values m2
h1
, m2

h2
, indicated explicitly in Appendix I. These eigenvalues correspond

to states in a mass basis defined by

h1 = cos(α)h+ sin(α) s h2 = −sin(α)h+ cos(α) s . (11.8)

The Higgs-singlet mixing angle α is defined by [194]

tan(α) = ρ

1 +
√

1 + ρ2
with ρ

def
=

m2
hs

m2
hh −m2

ss

. (11.9)

Throughout this analysis, h1 is assumed to be the predominantly Higgs-like eigen-

state while h2 is treated as singlet-like. Finally, the field-dependent mass squares of

the Goldstone bosons are

m2
φ (h, s) = λh2 − µ2 +

a1
2
s+

a2
2
s2 . (11.10)

11.2.2 Counterterm potential

The counterterm potential

VCT(h, s) = −1

2
δµ2h2+

1

4
δλh4+

δa1
4
h2s+

δa2
4
h2s2+

δb2
2
s2+

δb3
3
s3+

δb4
4
s4 (11.11)

is introduced in order to complete the renormalization of all seven couplings appear-

ing in Eq. (11.4). The relations

∂VCT(h, s)

∂h

∣∣∣∣
vev

!
= − ∂ṼCW(h, s)

∂h

∣∣∣∣∣
vev

∂VCT(h, s)

∂s

∣∣∣∣
vev

!
= − ∂ṼCW(h, s)

∂s

∣∣∣∣∣
vev

(11.12)

∂2VCT(h, s)

∂h2

∣∣∣∣∣
vev

!
= − ∂2ṼCW(h, s)

∂h2

∣∣∣∣∣
vev

∂2VCT(h, s)

∂s2

∣∣∣∣∣
vev

!
= − ∂2ṼCW(h, s)

∂s2

∣∣∣∣∣
vev

(11.13)

∂2VCT(h, s)

∂h∂s

∣∣∣∣∣
vev

!
= − ∂2ṼCW(h, s)

∂h∂s

∣∣∣∣∣
vev

(11.14)
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make sure the tree-level minima and masses remain intact at zero temperature after

applying the CW corrections. The remaining free coefficients can be exhausted by

further requiring

∂3VCT(h, s)

∂s3

∣∣∣∣∣
vev

!
= − ∂3ṼCW(h, s)

∂s3

∣∣∣∣∣
vev

∂4VCT(h, s)

∂s4

∣∣∣∣∣
vev

!
= − ∂4ṼCW(h, s)

∂s4

∣∣∣∣∣
vev

.

(11.15)

Two clarifications are in order. Firstly, the subclass of Z2-symmetric models re-

quires the truncation of VCT to those terms which satisfy the symmetry. With two

fewer coefficients, two of the renormalization conditions need to be dropped in turn.

Secondly, the third and fourth order derivatives in the conditions (11.15) prevent a

consistent treatment of the Goldstone divergences at the VEV in line with Chapter

10. Following Ref. [144], the Goldstone modes were instead omitted altogether in the

renormalization conditions. As the reference points out and was confirmed during

setup, this procedure merely amounts to a new, self-consistent set of renormalization

conditions with negligible effects on the potential altogether.

11.2.3 Thermal mass corrections

The thermal Debye masses of the Higgs-singlet system emerge as eigenvalues of the

thermal mass matrix

M̃2
s (h, s, T ) = M2

s (h, s) + Π (T ) . (11.16)

The matrix Π(T ) corrects each component of M2
s as [144]

Πhh (T ) =

(
3

2
g21 +

9

2
g22 + 6 y2t + 12λ+ a2

)
T 2

24
(11.17)

Πss (T ) = (4 a2 + 6 b4)
T 2

24
(11.18)

Πhs (T ) = Πsh (T ) ≈ 0 . (11.19)

The Goldstone bosons each obtain a correction

Πφ (T ) = Πhh (T ) (11.20)
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which can be added to their zero-temperature mass term. Finally, the gauge boson

modes are corrected by [100]

ΠL
W± (T ) = ΠL

W 3 (T ) =
11

6
g22T

2 ΠT
W± (T ) = ΠT

W 3 (T ) = 0 (11.21)

ΠL
B (T ) =

11

6
g21T

2 ΠT
B (T ) = 0 . (11.22)

This gives [167]

m̃2
W±

L
(h, s, T ) =

g22
4
h2 +

11

6
g22T

2 (11.23)

for the longitudinal W boson modes. The thermal mass squares of the longitudinal

Z and γ boson modes are [160]

m̃2
ZL,γL

(h, s, T ) =
1

8
(g21 + g22)h

2 + (g21 + g22)T
2 ±∆ (11.24)

with

∆2 =
1

64
(g21 + g22)(h

2 + 8T 2)2 − g21g
2
2T

2(h2 + 4T 2) . (11.25)

The standard truncated full dressing procedure of Eq. (8.11) will be followed again,

better supported by the employed CosmoTransitions implementation. The full

thermal effective potential is thus

Veff (h, s;T ) = Vtree (h, s) + VCW (h, s) + VCT (h, s) + V th
1 (h, s;T ) . (11.26)

11.3 Constraints on the model parameters

The parameter constraints used in this work rely on two previous studies of the

EWPhT and its phenomenology in the rSM carried out in Refs. [194, 197], as well

as on a general scrutiny of rSM phenomenology at the LHC provided by Ref. [201].

To the knowledge of the author, these references best capture the state-of-the-art

parameter constraints on real singlet scalar extensions and were therefore used as

guidelines. An overview of the theoretical and experimental bounds that have been

employed is provided hereinafter.

11.3.1 Theoretical constraints

Vacuum stability and reparametrization of the potential

The present day EW vacuum with a Higgs VEV of v ≈ 246GeV needs to be recov-

ered at tree-level (and, more generally, at zero temperature). In effect, this means
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imposing
∂Vtree(h, s)

∂h

∣∣∣∣
vev

=
∂Vtree(h, s)

∂s

∣∣∣∣
vev

= 0 . (11.27)

These conditions permit to eliminate µ2 and b2 altogether from the potential, as

they require that [197]

µ2 = λv2 +
1

2
vs (a1 + a2vs) (11.28)

b2 = − 1

4vs

(
v2(a1 + 2a2vs) + 4v2s(b3 + b4vs)

)
. (11.29)

Minimization further calls for a positive definite Hessian matrix (11.7) evaluated

at (h, s) = (v, vs). This allows to recast three further couplings in terms of more

convenient physical parameters as [197]

λ =
m2

h1
cos2(α) +m2

h2
sin2(α)

2v2
(11.30)

a1 =
2vs
v2

[
2v2s

(
2b4 +

b3
vs

)
−m2

h1
−m2

h2
+ cos(2α)(m2

h1
−m2

h2
)

]
(11.31)

a2 = − 1

2v2vs

[
(m2

h1
−m2

h2
)(2vs cos(2α)− v sin(2α)) + 4b3v

2
s (11.32)

− 2vs(m
2
h1

+m2
h2

− 4b4v
2
s)

]
.

Effectively, the set of free parameters {µ2, λ, a1, a2, b2, b3, b4} can replaced by

{mh1 , v,mh2 , vs, α, b3, b4} with fixed values for v ≈ 246GeV and mh1 ≈ 125GeV

(see e.g. Ref. [197]). Finally, the theory is assumed to be stable at the EW vacuum.

Therefore, one needs to make sure the EW minimum is indeed the lowest one should

the potential possess a plurality of minima at zero temperature.

Boundedness

The potential will be required to be bounded from below. In practice, the quartic

terms dominate the potential towards large field values along the axes h and s;

therefore, the couplings λ and b4 need to be positive. Moreover, in order to extend

boundedness to all directions, a2 also needs to be constrained. In summary, the

requirements for boundedness read [194]

λ, b4 > 0 ; a2 ≥ −2
√
λb4 . (11.33)
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Perturbativity of the couplings

The quartic couplings λ, a2 and b4 are required to satisfy [196, 201]

|λ|, |a2|, |b4| ≤ 4π . (11.34)

Perturbative unitarity

Perturbative unitarity is imposed on the S matrix for all 2 → 2 processes involving

scalars and longitudinal gauge bosons. All of its eigenvalues will be required to

satisfy [197, 202]

|wl| ≤ 8π . (11.35)

Details on the S matrix can be recovered in Appendix I.

11.3.2 Experimental constraints

Higgs signal strength, W boson mass and EW precision tests

SM couplings to the SU(2)-like state h1 will be suppressed by the mixing (11.8)

by a factor of cos(α), while they will scale with (−sin(α)) for the singlet-like state

h2 [197]. It follows that a number of EW observables are sensitive to the value of

α, and therefore, a series of experimental results constrain the available parameter

space (Fig. 11.1). Most notably, Higgs signal rates place a mass-independent upper

limit |sinα| < 0.33− 0.36 at 95% confidence level [147, 197, 201].

In principle, deviations from EW observables parametrized by the Peskin-Takeuchi

parameters need to be kept at bay. However, as can be seen in Fig. 11.1 and was

pointed out in more general terms in Ref. [197], the effects of these constraints are

largely sub-leading and can be safely ignored. Lastly, in the high mh2 scenario1,

measurements of theW boson mass are significantly more restrictive than the Higgs

signal rates [203]. As the calculated W boson mass needs to agree with experimen-

tal results, model-dependent one-loop corrections need to be suppressed, which sets

even tighter bounds on α (Fig. 11.1). The figure allows to tentatively implement

these constraints for a fixed v/vs; however, a strict and general treatment requires

1Roughly defined by mh2 & 2mh1 .
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to follow the prescriptions of Ref. [203]. This was deemed beyond the scope of this

work and left for future studies.

Altogether, taking advantage of the reparametrization of the model, parameter se-

lection took place in terms of the more convenient set of quantities {mh2 , vs, α, b3, b4}.

The ranges in question, showcased in Table 11.1, correspond to a combination of

bounds set by Refs. [194, 197]. All parameter sets underwent the checks described

in this section. For the verification of the theoretical constraints, as well as for

later uses throughout the analysis, the sets were reexpressed in terms of the original

couplings.

Table 11.1: Parameter space used throughout this chapter, on the basis of Refs. [194,

197]. The upper limits on the dimensionful constants very roughly keep the analysis within

EW scale, while the bound on b4 lies well within the bounds of perturbativity.

Parameter space
vs [GeV] mh2 [GeV] α b3 [GeV] b4

[0.01, 1000] [260, 1000] [−0.35, 0.35] [−1000, 1000] [0.001, 5]

Figure 11.1: Upper limits on |sin(α)| as a function of the mass parameter mh2
(here, mH) for a

fixed value of β = v/vs. As noted in the main text, present constraints on account of Higgs signal
rate searches are slightly more stringent than in this figure, i.e. |sin(α)| < 0.33 [147, 197]. Figure
taken from Ref. [201], which summarizes the results of Refs. [204–207].
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11.4 Construction of the electroweak sphaleron

The derivation of the EW sphaleron follows the principles of Chapters 5 and 10.

The underlying energy functional is [145, 156]

E [W a
µ ,Φ, s] =

∫
d3x

[
1

4
W a

ijW
aij + (DiΦ)

†(DiΦ) +
1

2
∂µs∂

µs+∆V T
eff(Φ, s)

]
,

(11.36)

with [155, 156]

∆V T
eff(Φ, s)

def
= Veff(Φ, s, T )− Veff(Φ, s, T )

∣∣
vev (11.37)

ensuring its evaluation with respect to the absolute vacuum at temperature T . The

ansatz of spherically symmetric fields is given by [145, 155]

Φ (ξ, θ, φ;µ) = h(ξ) Φ∞ (θ, φ;µ) +
(
1− h(ξ)

) v√
2

(
0

e−iµ cosµ

)
(11.38)

s (ξ, θ, φ;µ) = vs l(ξ) (11.39)

Wξ (ξ, θ, φ;µ) = 0 (11.40)

Wθ (ξ, θ, φ;µ) = f(ξ)W∞
θ (θ, φ;µ) (11.41)

Wφ (ξ, θ, φ;µ) = f(ξ)W∞
φ (θ, φ;µ) , (11.42)

with the loop parameter µ ∈ [0, π], the temperature-dependent VEVs v = v(T ),

vs = vs(T ) and a dimensionless radial coordinate

ξ
def
= g2 rΩ . (11.43)

As pointed out by Refs. [153, 156], Ω merely rescales the radial coordinate and can

be any parameter of mass dimension one, e.g. v, vs or
√
v2 + v2s . Furthermore, the

missing loop parameter in Eq. (11.39) is noted, which ties in with the singlet scalar

partaking trivially in the gauge structure of the theory. Evaluation of the ansatz at

µ = π/2 maximizes the energy along the loop, delivering the functional

E [f, h, l] =4πΩ

g2

∫ ∞

0

dξ

{
4

(
df

dξ

)2

+
8

ξ2
f 2(1− f)2 +

1

2

v2

Ω2
ξ2
(
dh

dξ

)2

+
v2

Ω2
h2(1− f)2 +

1

2

v2s
Ω2
ξ2
(
dl

dξ

)2

+
ξ2

g22Ω
4
∆V T

eff(h, l)

}
. (11.44)

As follows from Eq. (11.37), the quantity

∆V T
eff(h, l) = Veff(v h, vs l, T )− Veff(v, vs, T ) (11.45)
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takes care of evaluating the sphaleron energy (11.44) with respect to the absolute

vacuum energy of the state (v, vs). Resting on the requirements for the existence of

the sphaleron presented in Chapter 5, the radial functions need to satisfy

lim
ξ→0

f(ξ) = 0 lim
ξ→0

h(ξ) = 0 lim
ξ→0

l′(ξ) = 0 (11.46)

lim
ξ→∞

f(ξ) = 1 lim
ξ→∞

h(ξ) = 1 lim
ξ→∞

l(ξ) = 1 . (11.47)

As shown in Ref. [156], the Neumann boundary condition on l at the origin is non-

trivial but ultimately the only reasonable one ensuring the finiteness of E . The

Euler-Lagrange equations which result from Eq. (11.44) are

ξ2
∂2f

∂ξ2
= 2f(1− f)(1− 2f)− 1

4

v2

Ω2
ξ2h2(1− f) (11.48)

∂

∂ξ

(
ξ2
∂h

∂ξ

)
= 2h(1− f)2 +

ξ2

g22v
2Ω2

∂

∂h
∆V T

eff(h, l) (11.49)

∂

∂ξ

(
ξ2
∂l

∂ξ

)
=

ξ2

g22v
2
sΩ

2

∂

∂l
∆V T

eff(h, l) . (11.50)

The sphaleron energy is calculated via Eq. (11.44) with the solutions obtained for

Eqs. (11.48) – (11.50). Unlike previous analyses of the model and in line with

Chapter 10, this work also considers the U(1) corrections to the energy. Given

the gauge structure of the theory, these can be accounted for by applying the SM

expression in Eq. (5.22).

11.5 Investigation of the decoupling criteria

11.5.1 Selection of benchmark points

A few tentative scans within the ranges of Table 11.1 allowed to identify the predom-

inant phase transition trends in the general rSM scenario. In line with the findings

of Ref. [197], it was found that one-step phase transitions dominate parameter space.

While second-order phase transitions make up sizeable portions thereof, they do not

provide the appropriate conditions for EWBG and were not pursued here.

A point of general importance concerns the non-restoration behaviour of the sin-

glet, i.e. its acquisition of a non-zero VEV, at high temperatures in the FOPhTs

recovered. This phenomenology was studied by Refs. [156, 208] and a priori gener-

alizes the high temperature restoration patterns presented in Ref. [145]. Ultimately,
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in absence of additional symmetry requirements (such as a Z2-symmetry), one of the

singlet VEVs is necessarily rendered unphysical by the shift symmetry addressed in

Section 11.1. What remains physical, however, are any jumps in the field value at

phase transitions. To this aim, it will be useful to define the quantity

∆vs
def
=
√
(vs − vs,sym)2 , (11.51)

with vs,sym the singlet VEV in the EW symmetric phase at the moment of the phase

transition. Altogether, two parameter points satisfying the characteristics outlined

above were singled out in Table 11.2 for further analysis.

Finally, it is pointed out that, whereas no two-step phase transitions were found

in the coarse scans carried out for the general scenario, they constitute a dominant

pattern in Z2-symmetric models (cf. Ref. [148]). As their analysis requires a targeted

approach, two-step phase transitions are left for future work. Nonetheless, one

parameter point is kept for future reference in Table 11.2.

Table 11.2: BMPs used for a first characterization of the sphaleron.

BMP1 BMP2 BMP3
PT pattern 1-step 1-step 2-step
Restoration No No Yes
vs [GeV] 222.37 98.71 150.00

mh2 [GeV] 476.05 275.67 540.00

α 0.07 −0.29 0.10

b3 [GeV] −413.81 −376.95 0

b4 1.64 2.78 4.66

E0 [GeV] 8901.18 8994.32 9331.26

Tn1 [GeV] 124.19 105.75 126.29

vn1 [GeV] 197.60 205.75 76.09

vs,n1 [GeV] 219.95 108.23 0

vs,sym [GeV] 187.35 159.18 0

En,1 [GeV] 6451.09 7078.58 2673.43

Tn2 [GeV] - - 95.02

vn2 [GeV] - - 225.14

vs,n2 [GeV] - - 139.21

En,2 [GeV] - - 8379.76
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11.5.2 Characterization of the sphaleron

Following the procedures of Chapter 10, the solutions to (11.48) – (11.50) for the

BMPs of Table 11.2 provided first insights into the sphaleron. As the plots in

Fig. 11.2 show, the profiles of the Higgs and gauge fields at zero- and nucleation-

temperature bear a strong resemblance to their SM and IDM counterparts (cf. Figs.

5.3 and 10.1). This stands in contrast to the diverse physiognomy exhibited by the

singlet field profiles, which has no distinctive effect on the remaining fields other

than a slight impact on their convergence rates. The origin of this contrasting

phenomenology in the profiles was ultimately not pursued in this work; nonetheless,

it could be worth studying any links to the overall modest contribution of the singlet

field on the sphaleron energy suggested in Ref. [156].

The evolution of the sphaleron energy E and its relation to the various VEVs

after symmetry breaking is provided in Fig. 11.3 for BMPs 1 and 2. Firstly, as the

left-hand side plots showcase, the temperature-dependent evolution of E (in red)

Figure 11.2: Exemplary sphaleron curves for the BMPs in Table 11.2. The continuos lines
correspond to the zero-temperature solutions of (11.48)–(11.50), whereas the dotted lines were
obtained at the respective nucleation temperatures (in the case of BMP3, at Tn,2).
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largely tallies with the behaviour of the Higgs VEV v(T ) (in orange). The right-

hand side plots of the figure cement this observation: whereas the proportionality

between both quantities is not exact, the approximate scaling law (7.11) between

v(T ) and E is tangible for these BMPs.

Secondly, the figure further addresses an aspect of singlet models which has gar-

nered attention in the past, namely the nature of the scaling – if extant at all –

between the energy and the remaining singlet and full VEVs of the model [156].

Relying on the figure, the existence of a simple, universal scaling law for the singlet

VEV (in green) appears dubious, as opposite scaling with E between both rows is

displayed. Yet, this picture changes drastically when considering the quantity ∆vs

and the corresponding full VEV
√
v2 +∆v2s , i.e. the quantities accounting for the

jump of the VEV at the phase transition. The scaling behaviour of the full VEV in

particular beggs the question of whether it could be a more suitable candidate for

a criterion on SFOPhTs than the Higgs VEV. Ultimately, Ref. [156] settled this

Figure 11.3: Left: Temperature-dependent evolution of the normalized VEVs Ω(T ) and
sphaleron energies for BMP1 and BMP2 from Table 11.2. The plots cover the range between
zero temperature and the nucleation temperature Tn. Right: Scaling of E(T ) with the different
VEVs.

94



CHAPTER 11. REAL SCALAR SINGLET EXTENSION

question in a targeted numerical study. Such a criterion inadequately captures the

decoupling of sphalerons. Instead, the standard condition (7.14) on the Higgs VEV

alone remains appropriate. This sets the stage for its reassessment.

11.5.3 SFOPhTs and sphaleron decoupling in the rSM

The reliability of the standard ξn-criterion was counter-checked at nucleation in line

with the final procedure of Chapter 10. To this aim, the parameter space showcased

by Table 11.1 was sampled randomly. For the 500 sample parameter sets surviving

all constraints and featuring a first-order nucleation into the correct EW minimum,

the quantities ξn, E(Tn) and the corresponding σn were calculated. It is found

that for low enough vn and ξn, the finiteness of the mesh domain compromises the

numerical integrity of the sphaleron solutions in the setup employed (see Appendix

H.1.3). These effects set in slightly below ξn . 0.8 and thus motivate the cutoffs

in the following figures. Fig. 11.4 conveys the linear nature of the scaling between

E(Tn)/Tn and ξn. It determines the dominant behaviour of σn in relation to ξn, in

turn displayed in Fig. 11.5. The color gradient in Fig. 11.4 further showcases E(Tn)

for the remaining 338 points, which were found in the range 3.5− 10TeV, whereas

the color gradient in Fig. 11.5 does the same for the normalized vn.

Figure 11.4: Scaling of E(Tn)/Tn with ξn in the rSM for a sample of 338 random points within
the ranges of Table 11.1.
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Figure 11.5: Comparison of the criteria on σn and ξn in the rSM for a sample of 338 random
points within the space of parameters of Table 11.1. The shaded region in the lower left corner is
excluded by the σ-criterion and the canonical ξ-criterion.

Yet again, the modesty of the canonical ξn-criterion is hinted at by Fig. 11.5, as

the curve outlined by the sample data crosses the bounds on σ beyond the shaded

region marking ξn . 1. The magnification suggests a shift of the ξ-criterion to

ξn & (1.05− 1.30) , (11.52)

which tallies with the results obtained for the IDM and can largely be traced back

to the similar – yet not identical – scaling of Figs. 10.7 and 11.4. Furthermore, and

as encountered in the IDM, one notes the potential for phase transitions with large

E(Tn) and vn, which are linked to ξn � 1. Whereas the figures suggest a relative

scarcity of such phase transitions as compared to transitions with ξn ∼ 1, this could

ultimately be an unwanted artifact of the sample selection or the small sample

size and thus requires caution. Finally, in contrast to the minimal dispersion in the

results of the previous chapter, it is worth noting the width of the data sample in Fig.

11.4. This width is of approximately 0.05ξn for the slices of constant σn most densely

populated and thus marks a stark contrast to the σ − ξ plot obtained for the IDM.

The higher dispersion in the data sample of the rSM can be tentatively traced back

to, at least, two sources which ultimately stress the differences between the models

and approaches followed throughout this work. First of all, the transitions considered
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in the rSM are much richer on a structural level, as they feature a full range of active

fields, as opposed to the inertness of Φ2 in the IDM. The active interplay of all fields

entails an enhanced impact of all model parameters. In particular, none of the tree-

level terms in ∆V T
eff(h, l), featured in Eqs. (11.48) – (11.50), vanishes on account

of field inertness. Whether this opens the door to non-trivial effects of individual

sampling parameters and combinations thereof on E(T ), which could then affect the

relation between ξ and σ at a subdominant level, could be an interesting direction

to follow. Ultimately, this chapter has not delved into the dependence of the phase

transition strength on individual parameters, which would be a good place to start.

Secondly, sampling parameters in the rSM were reaped from a parameter space for

the most part much less constrained than in the former analysis, and then screened

in a much more lenient manner (see Section 11.3.2). Although recent bounds were

employed for both models, parameter selection and screening in the rSM took into

account fewer experimental constraints and ultimately did not specifically aim for

DM candidates. The relative freedom in the choice of model parameters may in turn

have induced larger regions of parameter space seemingly available for SFOPhTs.

Within these, an increased heterogeneity in the relation of ξ and E(T ) may be

possible, which would feed the dispersion in plots of σ − ξ as Fig. 11.4. These

arguments are not entirely speculative and tie in with the results of Ref. [156],

which display a suggestive dispersion behaviour in similar plots of E(Tc)/Tc against

ξc.

On the whole, the results obtained in this chapter largely agree with similar

results available in the literature. Refs. [145, 156] both suggest the bounds ξc &

(1.1 − 1.2), obtained under an assumption that roughly translates into the upper

bound on σ [91]. They are well covered by the central region of the bounds (11.52) for

ξn. However, the present results raise the more stringent bound by 0.05−0.10 units of

ξn, the latter uncertainty on account of the sample dispersion. Whereas these results

constitute at best a small improvement on the state of the art, they independently

confirm the increased severity of the decoupling criterion in the rSM with respect

to the order-of-magnitude estimate ξ & 1. Nonetheless, when considered in the

context of the most generous estimates (7.15) of the ξ-criterion available in the SM,

the results (11.52) cannot be unequivocally attributed to the effects of new physics.
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Ultimately, it is yet again the uncertainty in the sphaleron fluctuation determinant κ

which marks the limits of this work. At any rate, these results and their comparison

to equivalent literature values serve to gauge the performance of the framework, i.e.

of the approach and the computational implementations, on which the novel results

of Chapter 10 rest.

.

98



CHAPTER 12. CONCLUSION AND OUTLOOK

Chapter 12

Conclusion and outlook

At a crossroads between cosmology, elementary particle physics and QFT, the BAU

is one of the great mysteries of modern physics. EWBG constitutes one of the most

promising candidate solutions to the puzzle, yet explicitly invokes physics beyond

the SM for a successful realization. In the present work, the mechanism has been

approached in two models with extended scalar sectors in order to shed light on one

of its premises: a strong first-order EW phase transition.

Part I of this work provided a comprehensive review of EWBG which laid down

the formal groundwork and dissected two of its fundamental ingredients: the EW

sphaleron and a SFOPhT at EWSB. An outline of the mechanism of EWBG was pre-

sented, on the basis of which the standard order-of-estimate criterion ξ def
= v(T )/T &

1 for a SFOPhT was justified. Part II addressed the methods employed throughout

the later analyses. First, it introduced the general elements of the one-loop ther-

mal effective potential used to track the phase transition in the candidate models.

Then, two computational methods were presented on which the entirety of the later

analyses came to rest. Special emphasis was placed on a general-purpose relaxation

algorithm which was successfully embedded into the framework of this project. Fi-

nally, Part III reassessed the criterion ξ & 1 for two extensions of the SM, the

IDM and the rSM, which were set up taking into account state-of-the-art theoret-

ical and experimental constraints. Special attention was paid to the temperature

scheme used in the evaluation of the criterion. After a comprehensive comparison,

the scheme showing an improved consistency with the phenomenology of phase tran-

sitions was chosen. This ensured that the largely independent criterion of bubble

nucleation, crucial and yet widely neglected in similar studies, was appropriately

taken into account.

The central results obtained in Part III call for a conservative assessment. On
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the one hand side, both models suggest an updated criterion of ξn & (1.05 − 1.30)

within the uncertainties of the framework. This renders the condition up to 30%

more severe than the plain order-of-magnitude estimate ξ & 1 that pervades the

literature. On the other hand side, these results largely come to agree with the

more nuanced SM estimates of the criterion presented in Chapter 7, as well as

with the outcomes of comparable analyses available for the rSM and general 2HDM

scenarios. All thing considered, this work strengthens current state-of-the-art results

via an independent comprehensive assessment. The impact of the new physics and

the improved temperature scheme on the criterion for a SFOPhT can be deemed

modest, yet not entirely negligible. Moreover, the novel results obtained for the IDM

constitute a first benchmark of the ξ-criterion in the model to the best knowledge

of the author.

In addition to the central results, this work sheds light on the separate issue

of bubble nucleation. Its importance reaches far beyond the scope of this work,

successful nucleation being a phenomenological imperative of BSM scenarios. In the

context of EWBG, the nucleation criterion acts on top of the Sakharov conditions

and should be viewed as both a vital requirement and a valuable asset. As the

comparative case study in the IDM featured in this work shows, significant portions

of parameter space can be excluded altogether on this criterion alone, thus helping

to better delineate the regions available for a SFOPhT.

Finally, it should be interesting to acquire a sound grasp of the complex multi-step

transitions largely eluded in this work. Such studies might, for instance, constitute

a first step towards ambitious reevaluations of multi-Higgs doublet models seasoned

with additional singlet scalars with regards to their potential for EWBG.

In the grand scheme of things, EWBG relies on far more than a strong first-order

EW phase transition. Within the realm of the phase transition alone, additional

conditions on the bubble and particle dynamics constitute further defining factors.

Moreover, the independent matter of CP violation needs to be accounted for. None

of the models considered in this work inherently feature additional CP violation,

meaning that new sources have to be added ad-hoc. Ultimately, an elegant solution

to the puzzle of the BAU could lie in a comprehensive model which addresses the

entirety of the Sakharov criteria. Within EWBG, the ever-present requirement for
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thermal off-equilibrium will necessarily call for a SFOPhT. The results presented in

this thesis, based on state-of-the-art methods, constitute a stepping stone towards

more comprehensive models which could hold the key to the BAU.
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APPENDIX A. UNITS AND CONVENTIONS

Appendix A

Units and conventions

The following conventions, values and constants are assumed throughout the en-

tirety of the work.

Units and constants

Natural units are employed unless explicitly stated otherwise, i.e.

~ = c = 1 (A.1)

for the reduced Planck constant ~, the speed of light c and the gravitational constant

G.

Tensors, matrices and vectors

This work essentially assumes the conventions of Ref. [79] for the tensors and

matrices typical of QFT. For example, the standard metric tensor in particle physics

and QFT will be

ηµν = ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (A.2)

Greek indices cover {0, 1, 2, 3} or alternatively {t, x, y, z}. In certain instances, t

will be replaced by the Euclidean τ = −it; Greek indices will still be used. Roman

indices instead refer to {1, 2, 3} or {x, y, z}. Occasionally, they may cover spherical

polar coordinates, i.e. {r, θ, φ}.

The Pauli matrices are

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.3)

The generators of SU(2) rotations are normalized Pauli matrices, i.e. τa = σa/2.

The Dirac matrices are

γi =

(
0 σi

−σi 0

)
, (A.4)
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with

γ0W =

(
0 I2
I2 0

)
, γ0D =

(
I2 0

0 −I2

)
(A.5)

in the Weyl (W) and Dirac (D) bases, respectively. They may be part of a vector

γ =
(
γ0, γ1, γ2, γ3

)T . (A.6)

Finally, an additional γ-matrix is introduced as

γ5 = iγ0γ1γ2γ3 . (A.7)

On an entirely different note: standard three-dimensional vectors may occasion-

ally appear in boldface depending on the context, as in Chapter 9 and Appendix E.

U(1) and SU(2) gauge transformations

The action of U(1) rotations on the pertinent fields in Chapter 2 can be expressed

as [79, 94]

Φ(x) → eiα(x)Φ(x) (A.8)

ψ(x) → eiα(x)ψ(x) (A.9)

Bµ(x) → Bµ(x) +
i
g1
∂µα(x) (A.10)

for a local rotation parameter α(x). The relevant SU(2) transformations instead

deliver

Φ(x) → U(x)Φ(x) (A.11)

ψ(x) → U(x)ψ(x) (A.12)

Wµ(x) → U(x)WµU
†(x) +

i

g2
U(x)∂µU

†(x) , (A.13)

with U(x) a SU(2) matrix

U(x) = eiβa(x)τa (A.14)

featuring three rotation parameters βa(x).

Tree-level masses of the relevant SM particles
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The zero-temperature masses of the SM particles contemplated in the analyses

are [209]

mh = 125.10(14)GeV mγ = 0GeV (A.15)

mW± = 80.379(12)GeV mZ = 91.1876(21)GeV (A.16)

mt = 172.76(30)GeV . (A.17)

Further parameters and constants

The reduced Planck mass [122, 210]

MPl
def
=

√
~c
8πG

= 2.43 · 1018 GeV (A.18)

is used throughout this work. The number of relativistic degrees of freedom in the

SM at T ∼ O(102GeV) is [91, 122]

g∗(T ) ≈ 106.75 . (A.19)
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Appendix B

Finite-temperature Feynman rules

These are the finite-temperature, momentum-space Feynman rules as presented in

Ref. [91] and assumed in this work. Throughout these, β is the inverse temperature,

β
def
= T−1.

Matsubara frequencies ωn

Bosons : ωb
n = 2nπβ−1 (B.1)

Fermions : ωf
n = (2n+ 1)πβ−1 (B.2)

Boson propagator

GB(p) =
i

pµpµ −m2
with pµ =

(
iωb

n, p̄
)

(B.3)

Fermion propagator

GF (p) =
i

γµpµ −m
with pµ =

(
iωf

n, p̄
)

(B.4)

Loop integrals

iβ−1

∞∑
n=−∞

∫
d3p

(2π)3
(B.5)

Vertices

− iβ(2π)3δ
(∑

i

ωni

)
δ(3)
(∑

i

p̄i
)

(B.6)

where the sums in the δ-functions account for energy and momentum conservation

at each vertex.
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Appendix C

Saddle-point method

The saddle point method as presented in Ref. [95] is reviewed. Let φ̂ denote a critical

point of an action SE defined by the requirement

δSE[φ]

δφ

∣∣∣∣
φ=φ̂

= 0 . (C.1)

Then, up to quadratic order, the action around φ̂ can be approximated as [95]

SE[φ] ≈ SE[φ̂] +

∫
X

1

2
δφ

δ2SE[φ̂]

δφ2
δφ , (C.2)

with the definitions for the deviation δφ = φ − φ̂ from the critical field φ̂ and the

fluctuation operator
δ2SE[φ̂]

δφ2
. (C.3)

Eq. (C.2) is ideally expressed in a basis of eigenfunctions kn of the fluctuation

operator. Typically, if its spectrum is discrete, the integral goes into a discrete

sum over eigenvalues, thus simplifying the later functional integration. In such an

eigenbasis, the deviations δφ can be expressed with coefficients bn as

δφ =
∑
n

bnkn . (C.4)

The saddle-point method is fundamental in calculating decay and transition rates,

which this work features plenty of. A decisive requirement to this aim is that the

fluctuation operator be neither positive nor negative definite when evaluated at the

saddle point φ̂, which calls for a mixed spectrum of positive and negative eigenvalues.

Furthermore, in order to source a decay rate, the fluctuation operator will need to

possess an uneven number of negative eigenvalues. In a standard treatment (cf. Refs.

[95, 132, 133]), the fluctuation operator will have exactly one negative eigenvalue
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−ξ− for a mode denoted as k− in a spectrum of otherwise positive eigenvalues ξn for

the corresponding modes kn. Thus, one has that

SE[φ] ≈ SE[φ̂] +

∫
X

1

2
δφ

δ2SE[φ̂]

δφ2
δφ = SE[φ̂]−

1

2
ξ2−b

2
− +

∑
n≥0

1

2
ξ2nb

2
n . (C.5)

One may apply this, for example, to the vacuum-to-vacuum amplitude (6.7) in

Chapter 6. Redefining the functional measure as∫
Dφ def

=
∏
m

∫
dbm√
2π

, (C.6)

where m covers the indices of all possible modes, the partition function is factorized

and calculated as

Z[0] =

∫
Dφ e−SE [φ]

≈ e−SE [φ̂]

∫
db−√
2π

e
1
2
ξ2−b2−

∏
n≥0

∫
dbn√
2π

e−
1
2
ξ2nb

2
n

≈ i

√
1

ξ2−

∏
n≥0

√
1

ξ2n

 e−SE [φ̂] .

(C.7)
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Appendix D

Mathematical background

The structure of SU(2) theory introduced in chapters 4 and 5 heavily relies on

fundamental topological results. The present appendix aims to provide a minimal

background. Interested readers are referred to Chapter 3 onward in Ref. [115], as

well as the more recent Ref. [66], both of which this appendix closely follows and

from which the definitions were seized.

D.1 Maps and homotopy theory

Let X, Y be two boundaryless manifolds and x0 ∈ X, y0 ∈ Y a point on each.

Mappings f : X 7→ Y will be called based if they are defined such that f(x0) = y0.

As between manifolds, it is also possible to define mappings between two mappings

f0 and f1 as

f̃ : X × [0, 1] 7→ Y. (D.1)

The second parameter of the mapping f̃ , henceforth τ , runs along the closed unit

interval. Two mappings f0 and f1 will be homotopically related if

• f̃ is continuous;

• τ can be chosen such that f̃ |τ=0 = f0 and f̃ |τ=1 = f1;

• f̃(x0; τ) = y0 for all τ .

In other words, if two based mappings f0 and f1 can be continuously deformed into

each other as a function of an external parameter, they are homotopic to each other.

Homotopy meets the requirements for an equivalence relation. One can therefore

define homotopy classes into which to sort the different f .

Homotopy classes for based mappings that have n-spheres Sn as their domain,
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D.2. Saddle points of functions on manifolds

f : Sn 7→ Y , are of particular interest. The reason for this is that important results

can be derived for mappings defined on n-spheres. Via stereographic projection it

is then possible to establish a correspondence between points on an n-sphere and

points on Rn, so that results calculated on the former are more generally applicable.

The first important result to note is the structure formed by homotopy classes for

based mappings f : Sn 7→ Y . Very generally, they can be organized into sets πn(Y ).

These sets also fulfill the groups axioms for n ≥ 1. An important result for these

groups is that

πn(S
n) = Z. (D.2)

The class of the constant mapping constitutes the identity element of π1(Y ) and

defines the notion of contractibility. Every element in this class is homotopic to the

trivial loop, i.e. each and every one of these loops can be deformed in a continuous

fashion such that the trajectories in Y are contracted into the single point y0. Con-

tractibility has certain implications on the topology of a manifold. If every possible

loop on Y can be contracted to a point, Y is said to be simply connected, i.e. it has

no holes. Two prime and opposing examples for these properties are the 2-sphere

(simply connected) and the 2-torus (not simply connected).

D.2 Saddle points of functions on manifolds

On a finite-dimensional, compact and connected manifold, multivariable calculus

can go a long way to providing the location and nature of critical points. Take a

well-behaved function f on a two-dimensional manifold M : depending on the num-

ber of negative eigenvalues of the Hessian, one can discriminate between a maximum,

a saddle point and a minimum of f on M .

However, in field theory one typically deals with infinite-dimensional spaces where

the tools of calculus can fall short. Nonetheless, when it comes to assessing the

existence and location of saddle points, there exist other methods like the so-called

minmax search procedure [66]. Its premise is intuitive: if two minima of f onM are

known, one can set up trial paths between them along which f will necessarily have

to attain a maximum. The lowest of these maxima corresponds to a saddle point of
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APPENDIX D. MATHEMATICAL BACKGROUND

the function on the manifold.

The minmax search procedure can be generalized to functions with only one min-

imum on M : one may search for the minmax of paths starting and ending at the

minimum. An essential requisite for this is the existence of non-contractible loops –

in other words, the existence of a hole – on the manifold such as to avoid the mini-

mum being itself the minmax point. If met, it is possible to systematically proceed

with the minmax search in each homotopy class.
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Appendix E

The Standard Model sphaleron

E.1 Existence

The existence of the EW sphaleron was shown in Ref. [54] yet treated more didac-

tically in Refs. [115, 118]. Their main ideas and basic outlines for the construction

of the sphaleron were seized on for the following brief review and its distillation in

Chapter 5.

Mathematically, the proof rests on two requirements. First of all, the gauge needs to

be fixed; otherwise, potential saddle points would always sit on gauge orbits along

which the energy would remain constant. Thus, the procedure would become ill-

defined and no true saddle points would arise. In spherical coordinates, a radial

gauge can be easily fixed by setting Wr = 0. It conveniently leaves one last, global

degree of freedom untouched, which will be taken advantage of shortly.

The second requirement is that, at spatial infinity, the Higgs field drop towards its

vacuum expectation value. On the one hand side, this defines a domain S2 manifold

at spatial infinity,

Φ∞ (θ, φ) = lim
r→∞

Φ (r, θ, φ) . (E.1)

Φ∞ projects the tuples (θ, φ) onto the Higgs vacuum manifold. On the other hand

side, it is necessary that any such mapping satisfy∣∣Φ∞ (θ, φ)
∣∣ = v√

2
(E.2)

for any choice of θ and φ. This makes sure that any vacuum field configuration has

finite energy and remains physical. Condition (E.2) crucially compactifies the Higgs

vacuum manifold to S3
vac. Expressions (E.1) and (E.2) thus induce a space of Higgs

field Φ∞ mappings that behave

Φ∞:S2 7→ S3
vac . (E.3)
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This will be a space of based mappings (see Appendix D): by exhausting the residual

gauge freedom still available and imposing a polar gauge condition, one can construct

the base point

Φ∞ (θ = 0) =
v√
2

(
0

1

)
. (E.4)

Thus, configuration space C and the space of based mappings Maps
(
S2 7→ S3

)
are

topologically one and the same.

The above result has profound implications – most notably, the existence of non-

contractible loops. This is a consequence of the central topological identity

π1
(
Maps

(
S2 7→ S3

) )
= π3(S

3) = Z, (E.5)

which states the existence of loop classes other than the trivial, contractible class.

The strategy in finding a sphaleron consists in building a loop of fields topologically

equivalent to a single mapping of non-zero topological degree. Since the topological

degree is a homotopy invariant, if the mapping constructed has a non-zero degree,

its homotopy class is different from the trivial, contractible class of degree zero.

The original loop of mappings thus is non-contractible. On such a non-contractible

loop, it is possible to perform a minmax search of the energy (Appendix D). In

the last step, the loop will be reinterpreted as a path between adjacent vacuum

configurations separated by a potential barrier. The sphaleron will correspond to

the configuration atop the barrier, on the lowest-energy mountain pass.

The non-contractible loop of fields can be constructed by invoking an external loop

parameter µ ∈ [0, π]. Thus, one can define a mapping Φ∞(µ) : S2 7→ S3
vac as

Φ∞ (θ, φ;µ) =

(
Φ∞

1

Φ∞
2

)
=

v√
2

(
sinµ sin θ eiφ

e−iµ (cosµ+ i sinµ cos θ)

)
, (E.6)

or equivalently, in terms of the real components,

Φ∞
Re (θ, φ;µ) =

v√
2


sinµ sin θ cosφ

sinµ sin θ sinφ

sin2 µ cos θ + cos2 µ

sinµ cosµ (cos θ − 1)

 . (E.7)

This loop of fields can be reinterpreted as a single identity mapping Ψ : S3
dom 7→ S3

vac

if a one-to-one correspondence between points p (θ, φ, µ) on S3
dom and every triple

(θ, φ, µ) is established. The reader can easily check that with φ ∈ [0, 2π] and θ ∈
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E.2. U(1) corrections to the SM sphaleron energy

[0, π],

p (θ, φ, µ) =
v√
2


sinµ sin θ cosφ

sinµ sin θ sinφ

sin2 µ cos θ + cos2 µ

sinµ cosµ (cos θ − 1)

 (E.8)

provides a sensible bijection. Making use of the one-to-one correspondence, it is now

easy to see that

Ψ(p) = Φ∞
Re(θ(p), φ(p), µ(p)) (E.9)

with Eq. (E.7) yields an identity mapping S3
dom 7→ S3

vac. The identity mapping

has a topological degree of one, as a loop over the domain covers the target mani-

fold exactly once; it is therefore non-contractible. It follows that the loop of fields

Φ∞ (θ, φ;µ) is non-contractible as well. Therefore, unless the energy were to be

constant for all field configurations, a saddle point – and thus, a sphaleron field

configuration – must exist.

E.2 U(1) corrections to the SM sphaleron energy

As the physical mixing angle θW is parametrically small, its effects can be added

perturbatively to the to the pure SU(2) sphaleron derived the previous section. To

this aim, a simplified approach was suggested in Ref. [55] which will be followed

here closely. The full Lagrangian (5.1) prompts an energy shift

∆E =

∫
d3x

(1
4
BijB

ij −BiJi

)
, (E.10)

corresponding to the gauge kinetic term for the field Bi. The Euler-Lagrange equa-

tions for this shift define a current

Ji(x) = ∂jBij = −1

2
ig1

[
Φ†(x)DiΦ(x)− (DiΦ(x))

†Φ(x)
]
. (E.11)

In the presence of Φ and Wi, the current Ji will in general not vanish and instead

source a non-zero field Bi. The latter will couple to and in general shift the pure

SU(2) solutions to Φ and Wi. Neglecting such feedback effects of order θ2W , the

energy shift can be shown to be

∆E = −
∫
d3x

1

2
BiJ

i . (E.12)
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The current Ji is axially symmetric and thus lends itself to a parametrization

J =
1

2
g1v

2h
2(g2vr)(1− f(g2vr))

r2
(
−y, x, 0

)T . (E.13)

Via

−∇2B = J (E.14)

it will give rise to the U(1) field, which itself admits an axially symmetric ansatz

B =
1

2
g1v

2q(ξ)
(
−y, x, 0

)T (E.15)

with q(ξ) a function of the dimensionless radial coordinate ξ = g2vr. As all other

fields, B needs to attain its – in this case vanishing – vacuum value at spatial infinity

while the theory remains well-defined at the origin. This establishes the boundary

conditions

lim
ξ→0

ξ3q(ξ) = 0 , lim
ξ→∞

q(ξ) = 0 (E.16)

on p(ξ). Its trajectory is determined by

ξ2
d2q

dξ2
+ 4ξ

dq

dξ
= −h2(1− f) , (E.17)

which is formally solved by

q(ξ) =
1

3ξ3

∫ ξ

0

dη η2h2(η)
[
1− f(η)

]
+

∫ ∞

ξ

dη
1

3η
h2(η)

[
1− f(η)

]
(E.18)

The energy shift can thus be expressed in terms of the radial functions f , h and p

as

∆E = −π
3

g21v

g32

∫ ∞

0

dξ ξ2h2(ξ)
[
1− f(ξ)

]
q(ξ) . (E.19)

This derivation was carried out for the SM case. However, it is also valid for the two

extended models investigated in this work. In the singlet extension, the singlet field

not couple to the U(1) gauge field and hence does not alter the derivation above. In

the IDM scenarios of this work, one of the Higgs fields always vanishes (v2(T ) = 0);

thus, (E.19) remains valid under the proper replacements of h by the non-vanishing

Higgs field.
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Appendix F

Sphaleron rate

Ref. [56] employed a semi-classical treatment of the sphaleron process which has

become a commonplace approach in the literature (see e.g. Refs. [27, 75, 122]).

The rate of sphaleron processes may be treated as of that of a particle on top of

a potential barrier overcoming the latter in the correct direction. The rate of such

processes can be calculated as [27, 56]

Γ = 〈δ(x) θ(p)〉

=

∫
dx dp δ(x) p θ(p) exp

[
−β
(

1
2
p2 + V (x)

)]
∫
dx dp exp

[
−β
(

1
2
p2 + V (x)

)]
≈ ω0

2π
e−βV0 ,

(F.1)

where δ(x) prepares the particle at the origin and θ(p) defines the correct momen-

tum direction. The picture hereby defined does not differ too much from standard

vacuum decay as treated in Chapter 6, and thus it will be useful to work out the

imaginary component of the free energy, which is expected to exist for a saddle

point. Denoting the modes of the vacuum and the unstable direction on the barrier

as ω0 and −ω−, respectively, and with V0 as the height of the potential barrier, for

a sphaleron one has that

ImF = T Im (lnZ) = T
Im (Z)

Z

≈ T
Im
∫
dx dp exp

[
−β
(

1
2
p2 + V0 − 1

2
ω2
−x

2
)]

∫
dx dp exp

[
−β
(

1
2
p2 + 1

2
ω2
0x

2
)]

=
ω0

2ω−β
e−βV0 .

(F.2)

These results can be combined such as to deliver a sphaleron rate

Γsph ≈ ω−

π

ImZsph

Z0

(F.3)
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in terms of partition funcions for fluctuations about the sphaleron and vacuum con-

figurations, Zsph and Z0. The calculation of Zsph requires some care with regards to

symmetries and the associated flat directions in field space. With a proper treatment

of the associated zero modes, the sphaleron rate can be shown to be [56]

Γsph

V
≈ ω−

2π
Ntr(NrotVrot)

(
αWT

4π

)3

α−6
W,Tκe

−E(T )/T . (F.4)

Ntr and Nrot are normalization factors related to the translational and rotational

symmetries of the system. Vrot = 8π2 is a volume factor of the rotation group,

and αW,T for the weak gauge coupling parameter g2 at high temperatures. κ is the

fluctuation determinant. In the SM, assuming λ/g22 ≈ 0.3, one can evaluate these

quantities to [122, 211]

Ntr ≈ 7.6 , Nrot ≈ 11.2 (F.5)

ω− ≈ 0.65 g22v(T )
2 (F.6)

αW,T = αWT/g2v(T ) (F.7)

10−4 < κ < 10−1 . (F.8)
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Relaxation method

In order to apply Newton’s method, and as pointed out in Chapter 9 and Ref. [169],

the system is perturbed linearly, i.e.

ỹk → ỹk +∆ỹk . (G.1)

For the sake of clarity throughout this appendix, the tilde will be systematically

omitted. At k, the vector Dk now reads

Dk(yk +∆yk,yk−1 +∆yk−1)
def
= D̂k(yk,yk−1)

!
= 0N . (G.2)

To linear order in the perturbations ∆yk, one has

D̂k(yk,yk−1) ≈ Dk(yk,yk−1) +
N∑

n=1

∂Dk

∂yn,k−1

∆yn,k−1 +
N∑

n=1

∂Dk

∂yn,k
∆yn,k

!
= 0N . (G.3)

For simplicity, one may define the Jacobian S such that

Sj,n =
∂Dj,k

∂yn,k−1

, Sj,n+N =
∂Dj,k

∂yn,k
, n = 1, ..., N . (G.4)

The matrix S is (MN ×MN)-dimensional and its structure encodes the coupling

between adjacent state vectors. Making use of the second equality in Eq. (G.3), one

can write

N∑
n=1

Sj,n∆yn,k−1 +
2N∑

n=N+1

Sj,n∆yn−N,k = −Dj,k, j = 1, ..., N. (G.5)

Every deviation vector Dk is to be cancelled by appropriate perturbations at k and

its adjacent mesh indices. At the boundaries,

N∑
n=1

Sj,n∆yn,1 = −Dj,1, j = n2 + 1, n2 + 2, ..., N (G.6)
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and

N∑
n=1

Sj,n∆yn,M = −Dj,M+1, j = 1, ..., N (G.7)

must hold.

As an example, one may consider a system of three coupled differential equations

with one initial and two final boundary conditions. Discretizing the domain of

interest into three segments with four equally spaced points, the linear system of

equations to be solved in each iteration will look like [169]

s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s s s s

s s s

s s s



·



∆y1,1
∆y1,2
∆y1,3
∆y2,1
∆y2,2
∆y2,3
∆y3,1
∆y3,2
∆y3,3
∆y4,1
∆y4,2
∆y4,3



=



D1,1

D1,2

D1,3

D2,1

D2,2

D2,3

D3,1

D3,2

D3,3

D4,1

D4,2

D4,3



. (G.8)

The s-entries in Eq. (G.8) mark distinct entries a priori different from zero; empty

entries are zero-valued by construction. Its colored entries define algebraic rela-

tions for the corresponding perturbations. These relations are made to enforce the

boundary conditions by manually setting the colored entries of D to zero.

137



Appendix H

Aspects of the IDM

H.1 Parameter constraints in the IDM

H.1.1 Perturbative unitarity

Following Refs. [181, 212], the S matrix for all processes containing scalars has the

following eigenvalues:

w1,2 = λ3 ± λ4 (H.1)

w3,4 = λ3 ± λ5 (H.2)

w5,6 = λ3 + 2λ4 ± 3λ5 (H.3)

w7,8 = −λ1 − λ2 ±
√
(λ1 − λ2)2 + λ24 (H.4)

w9,10 = −λ1 − λ2 ±
√
(λ1 − λ2)2 + λ25 (H.5)

w11,12 = −3λ1 − 3λ2 ±
√
9(λ1 − λ2)2 + (2λ3 + λ4)2 . (H.6)

Perturbative unitarity is met when they all meet

|wl| ≤ 8π . (H.7)

H.1.2 Oblique parameters

Following Refs. [149, 181, 213], deviations of the EW precision observables can be

parametrized as

S =
1

72π(x22 − x21)
2
[x62fa(x2)− x61fa(x1) + 9x21x

2
2(x

2
2fb(x2)− x21fb(x1))] (H.8)

T =
1

32π2αv2
[fc(m

2
H± ,m2

H2) + fc(m
2
H± ,m2

A2)− fc(m
2
A,m

2
H)] (H.9)
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assuming α ≈ 1/127 for the electromagnetic fine-structure constant at an energy

scale
√
s ∼ mZ . The relevant functions featured above are

fa(x)
def
= −5 + 12 ln(x) , (H.10)

fb(x)
def
= 3− 4 ln(x) (H.11)

and

fc(x, y)
def
=


x+y
2

− xy
x−y

lnx
y

, x 6= y

0 , x = y

. (H.12)

H.1.3 Plotting range in plots of σ and E(T )/T

One unphysical aspect of the plots in Fig. 10.5 and those following which should

be acknowledged is the choice of the plotting range, which does not tally with that

of Figs. 10.3 and 10.4. It was found that for low enough ∆m, the low VEV at the

phase transition spoils the convergence behaviour of the relaxation code on account

of purely numerical effects. In such fringe cases, the finiteness of the solution domain

addressed in Chapter 9 becomes apparent1, and the calculations of the energy E

and σ become unreliable. For this reason, all plots of σ (and later E) are cut off at

ξ & 0.4− 0.6 or at the corresponding ∆m.

1And so do the computational limitations, as an increase in the solution domain while keeping

a reliable mesh density causes the computational cost to rocket.
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Appendix I

Aspects of the rSM

I.1 Eigenvalues of the Higgs-singlet mass matrix

The matrix (11.7) can be recast as a diagonal matrix with the two mass square

eigenvalues [156]

m2
h1,h2

(h, s) =
1

2

[(
3λ+

a2
2

)
h2 +

(
3b4 +

a2
2

)
s2 +

(
a1
2

+ 2b3

)
s− µ2 + b2

∓

{[(
3λ− a2

2

)
h2 −

(
3b4 −

a2
2

)
s2 +

(
a1
2

− 2b3

)
s− µ2 − b2

]2

+ 4

(
a2s+

a1
2

)2

h2

} 1
2
]
. (I.1)

I.2 Perturbative unitarity constraints

The scattering cross sections in the model need to remain bounded up to high

energies. In a partial wave analysis, this can be enforced by requiring the scattering

amplitudes al(s) to satisfy [202]

|Re{al(s)}| ≤
1

2
(I.2)

as the center-of-mass energy
√
s → ∞. Ref. [197] proposes to consider the S ma-

trix for all 2 → 2 processes involving scalars and longitudinal gauge bosons. The

reference classifies them into the following charge channels:

• seven neutral channels: {h1h1, h2h2, h1h2, h1Z, h2Z, ZZ, W+W−};

• three charge-1 channels: {h1W+, h2W
+, ZW+};

• one charge-2 channel: {W+W−}.
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The partial wave analysis can be translated into a condition on the eigenvalues wl

of the S matrix, |wl| ≤ 8π. The S matrix presented here corresponds to the one

outlined in the appendix of Ref. [197]. For a calculation of its matrix elements, one

may consult Ref. [202].

Neutral channels

The first sub-matrix S0 accounts for interactions in the neutral channels. Its non-

zero elements are listed below.

S11 = −3 (a2 cos2θ sin2θ + b4sin4θ + λ cos4θ) (I.3)

S12 =
1

8
(3 cos 4θ (−a2 + b4 + λ)− a2 − 3b4 − 3λ) (I.4)

S13 =
3 sin 2θ (cos 2θ (−a2 + b4 + λ)− b4 + λ)

2
√
2

(I.5)

S16 = −1

2
a2 sin2θ − λ cos2θ (I.6)

S17 = −a2 sin
2θ + 2λ cos2θ√

2
(I.7)

S22 = −3 (a2 cos2θ sin2θ + b4 cos4θ + λ sin4θ) (I.8)

S23 = −3 sin 2θ (cos 2θ (−a2 + b4 + λ) + b4 − λ)

2
√
2

(I.9)

S26 =
1

2
a2 cos2θ − λ sin2θ (I.10)

S27 = −a2 cos
2θ + 2λ sin2θ√

2
(I.11)

S33 =
1

4
(3 cos 4θ (−a2 + b4 + λ)− a2 − 3b4 − 3λ) (I.12)

S36 =
(2λ− a2) cos θ sin θ√

2
(I.13)

S37 = (2λ− a2) cos θ sin θ (I.14)

S44 = −a2 sin2θ − 2λ cos2θ (I.15)

S45 = (2λ− a2) cos θ sin θ (I.16)

S55 = −a2 cos2θ − 2λ sin2θ (I.17)

S66 = −3λ (I.18)

S67 = −
√
2λ (I.19)

S77 = −4λ (I.20)
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I.2. Perturbative unitarity constraints

Charge-1 channels

The next block, SI , accounts for scatterings in the charge-1 channels.

SI =

−2λ cos2θ − a2sinθ (2λ− a2) cosθ sinθ 0

(2λ− a2) cosθ sinθ −a2 cos2θ − 2λ sin2θ 0

0 0 −2λ

 (I.21)

Charge-2 channels

Finally, charge-2 channels have but one entry.

SII = −2λ (I.22)

The full S matrix is a direct sum of the partial matrices, S = S0

⊕
SI

⊕
SII .

Perturbative unitarity of the scatterings considered requires its eigenvalues wl to

fulfill

|wl| ≤ 8π . (I.23)
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