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Strong First-Order Electroweak Phase Transitions:
A Reassessment of the Sphaleron Decoupling Criterion In two Models with

Extended Scalar Sectors

Electroweak baryogenesis builds on the premise of a strong first-order electroweak
phase transition, which is realized when the temperature 7' at its onset and the
corresponding temperature-dependent Higgs vacuum expectation value v(7") satisfy
v(T)/T zZ 1.0 according to a standard working criterion. This thesis reassesses the
reliability of the criterion in two models with extended scalar sectors: the Inert
Doublet Model and a real scalar singlet extension of the Standard Model. The focus
lies in a reevaluation of the dominant temperature- and model-dependent effects of
the electroweak sphaleron, which underlie the criterion and determine the order of
magnitude of the condition. Furthermore, the widely neglected subtlety of successful
bubble nucleation is addressed. Its implications are comprehensively studied in the
Inert Doublet Model and generally accounted for in both models — for which recent
phenomenological constraints are taken into consideration — by evaluating the phase
transition strength at the nucleation temperature. Ultimately, the effects of the new
physics and the chosen temperature scheme on the criterion are found to be modest,
with the respective analyses of the models both suggesting an updated criterion
o(T)/T =z (1.05 — 1.30) that agrees well with the most generous state-of-the-art
estimates.

Starke Elektroschwache Phaseniiberginge Erster Ordnung:
Eine Neubewertung des Sphaleron-Entkopplungskriteriums in zwei

Modellen mit erweiterten Skalarsektoren

Elektroschwache Baryogenese baut auf der Pramisse eines starken elektroschwachen
Phasentibergangs erster Ordnung auf, der gemafl eines Standardkriteriums dann
realisiert wird, wenn die Ubergangstemperatur 7" und der entsprechende temper-
aturabhéngige Higgs-Vakuumerwartungswert v(7") die Bedingung v(7T")/T 2 1.0
erfiillen. In dieser Arbeit wird die Zuverlassigkeit des Kriteriums in zwei Mod-
ellen mit erweiterten Skalarsektoren neu bewertet: dem Inert-Doublet-Modell und
einer realen skalaren Singulett-Erweiterung des Standardmodells. Der Schwerpunkt
liegt in einer Neubeurteilung der dominanten temperatur- und modellabhéngigen
Effekte des elektroschwachen Sphalerons, welche dem Kriterium letztendlich zu-
grunde liegen und die Grofenordnung der Bedingung festlegen. Auflerdem wird die
weithin vernachlassigte Feinheit der erfolgreichen Blasennukleation angerissen. Ihre
Auswirkungen werden im Inert-Doublet-Modell umfassend untersucht und in beiden
Modellen — hinsichtlich neuester phdnomenologischer Einschrinkungen aufgestellt —
allgemein beriicksichtigt, indem die Phasentibergangsstéarke bei der Nukleationstem-
peratur ausgewertet wird. Letztendlich gelten die Auswirkungen der neuen Physik
und des gewahlten Temperaturschemas auf das Kriterium als bescheiden: die jew-
eiligen Analysen der Modelle schlagen ein angepasstes Kriterium o(7")/T 2 (1.05
— 1.30) vor, welches gut mit den grofziigigsten aktuellen Abschitzungen iiberein-
stimmt.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Over the past fifty years, the Standard Model of particle physics has succeeded
in providing a comprehensive framework within which to explore the fundamental
interactions that shape our universe. And yet, despite its many successes, the sheer
variety of its shortcomings cannot be overstated [IH13]. One subtle and yet deci-
sive flaw concerns baryonic matter, which the SM presumes to describe well. While
the theory provides a sound account of baryonic matter largely backed up by ex-
perimental evidence, nothing in its structure suggests a prevalence of baryons over
antibaryons or vice versa [14-16]. This notion becomes untenable in the light of
present evidence, which suggests an excess of matter over antimatter [17-22]. The
baryon asymmetry of the universe thus fundamentally calls into question the
prowess of the SM.

The BAU becomes all the more puzzling when confronted to our present under-
standing of cosmology, which quickly rules out the simplest explanations. Accounts
of a universe subdivided into matter- and antimatter-dominated regions are short-
lived: they are as entropically far-fetched as they are lacking in experimental evi-
dence [17, 23-26]. Neither can the baryon asymmetry be rationalized as an initial
condition, as standard inflation calls for a dilution of such relic asymmetries [27].
Fine-tuning issues are particularly acute in the most optimistic cases and thereby
become no-go scenarios in the present scientific paradigm [28] 29]. Having virtually
excluded the present BAU as a remnant of the pre-inflation era, its generation by
means of dynamic processes — i.e. baryogenesis — faces the best odds.

While baryogenesis has seen very diverse implementations over the past decades
(see e.g. Ref. [30] for a compilation), its success necessarily rests on common ground
provided by the so-called Sakharov conditions |31H35]. A process that prompts

baryogenesis needs (i) to violate baryon number, (ii) to occur off thermodynamical
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equilibrium and (iii) to account for sufficient violation of the C and CP symmetries.
Whereas each of these poses a significant strain, the call for baryon number violation
faces a very particular challenge: any model of baryogenesis needs to accommodate
the present-day stability of the protorﬂ an observation at odds with the violation
of baryon number [38-43]. Furthermore, the scale disparity inherent to tests of
baryogenesis threatens a final coup de grace to many theories, as their testability
requires to correlate a process of cosmic scale to a set of accessible and measurable

parameters [44, 45].

A candidate mechanism which thrives in these apparent contradictions is elec-
troweak baryogenesis (EWBG]) [45-H53]. At its heart, EWBG takes advantage of an
established instance of symmetry breaking — namely electroweak symmetry break-
ing — in order to source the baryonic asymmetry. In its conception, the
mechanism is thus deeply rooted in SM electroweak phenomenology. The
greatest merit of EWBG lies in how it reconciles baryon number violation in the
early universe with the present-day stability of matter. Its cornerstone is the EW
sphaleron: a non-perturbative anomalous process predicted by the SM which is be-
lieved to have been enhanced before EWSB, yet to be largely suppressed in this day
and age [54-56].

Despite its virtues, EWBG faces a number of well-known implementational draw-
backs. While the SM provides a solid framework for the mechanism, the numbers
do not add up. In particular, it has been noted that CP violation in the SM is too
scarce to account for the observed baryon asymmetry [30, 57-60]. Furthermore, it
has been settled that the off-equilibrium property required for EWBG — a strong
first-order phase transition in the EW sector at EWSB — cannot be satis-
fied within the standard picture [30, 61-65]. Such deficiencies are complemented by
the practical impossibility of sphaleron processes at present or foreseeable colliders
[66]. Altogether, the study of EWBG is thus set ab initio on a path beyond the

present theoretical and experimental state of the art.

A large class of scenarios beyond the Standard Model (BSM)) features exten-

sions of the SM Higgs sector. Such extensions, often consisting in additional Higgs

!The stability of matter suggests baryon number conservation. As Ref. [36] points out, the

notion of baryon number conservation can be traced back to to E. C. G. Stueckelberg [37].
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CHAPTER 1. INTRODUCTION

doublets or new singlet scalars altogether, are known to possess non-trivial phase
transition behaviours on account of the broadened field content. When these effects
are considered, it is possible to alleviate the constraints on the standard Higgs sector
which otherwise hinder the viability of a SFOPhT. As high energy theory persists
in its supply of viable candidates for EWBG, phenomenological research continues
to tie in with experimental advances. The advent of gravitational wave detection
has rendered the study of cosmic-calibre phenomena more accessible than ever be-
fore, thus uncovering virgin ground for cosmic archaeology [67-72]. As a defining
event in the history of the universe, the EWPhT is expected to have left imprints
on the gravitational wave spectrum, its signature very much defined by the type
and strength of the phase transition and the underlying field content of the theory.
The prospects of tangible insights into one of the premises of EWBG, in addition
to the present climate of theoretical high energy physics, greatly foster the study of
the mechanism in extensions of the SM.

In the context of EWBG, a widely employed criterion classifies the EWPhT as
strong when the approximate inequality v,/Ty 2 1 holds, with both the vacuum
expectation value of the Higgs field v, and the temperature T} evaluated at the
moment of the phase transition |27, 47, [73-75]. This thesis sets out to revisit and
dissect the reliability of this condition in two BSM extensions of the Higgs sector:
the Inert Doublet Model and a canonical real scalar singlet extension .

To this aim, the following itinerary is proposed:

o Part|l|covers a largely self-contained theoretical build-up to EWBG. Chapters
—[6] present a general review of the context, the relevant tools and selected
ingredients of EWBG. Chapter 7] unifies these processes into the mechanism
of EWBG and justifies the requirement for a SFOPhT.

o Part [l specifies the theoretical methods and numerical procedures on which

the subsequent analyses rest.

o Part [1l| builds the IDM and the rSM in view of up-to-date experimental limits
and goes on to explore the viability of SFOPhTs therein. The emphasis is

placed on the reassessment of the condition vy /T 2 1.
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Chapter 2

Electroweak theory in the SM

Electroweak theory is the unified description of processes pertaining to the
weak and electromagnetic interactions. In the SM, the mathematical groundwork
for this description is provided by the Glashow-Weinberg-Salam (GWS|) model [76{-
78]. The centerpiece of the GWS theory is the gauge group SU(2), x U(1)y. Gauge
invariance of a theory with fermions ¢ under this group induces the existence of
four gauge fields: one field B, arising from the U(1) gauge symmetry under which
the particles carry a weak hypercharge Y and three fields W (a € {1,2,3}) emerg-
ing from a SU(2) gauge symmetry under which only the left-handed particles are
charged. The model is completed by a complex SU(2), Higgs doublet ®,

def 1 [ 1+ 199
o (e .

The Lagrangian of EW theory is given by

Lrw € Lign + Lyu — V(D). (2.2)

Liin represents the kinetic terms of the theoryEl,

def 1 a apy 1 v c s
Lrin & _ZWWW w o _ ZBWBAL + (D, @) (D'®) + Z i Dab; . (2.3)

J
The gauge field terms in Eq. (2.3]) follow the conventional definitions of the fields
and the field strength tensors (see e.g. Ref. [79]),

ef 1 ayfra
W;U« = §O' WM (2 4)
def
,ul/ - a B auB,u (25)
We, € 9, W — 9, W2+ goe™WIWE, (2.6)

def
1¢j 1€l djT O.



CHAPTER 2. ELECTROWEAK THEORY IN THE SM

with the Pauli matrices 0 (Appendix [A]). The sum over j covers all fermions in the
theory. EW theory distinguishes between so-called left- and right-handed fermions.
These have different transformation properties under the gauge group. Left-handed

leptons and quarks may transform as SU(2) doublets expressed as

pdef (Vo) gidet (Un) 2.7
(ez dy (2.7)

with ¢ denoting the fermion generation, i € {1,2,3}. Their right-handed counter-
partsﬂ

€y U di (2.8)
instead transform as singlets under SU(2) and decouple altogether from its gauge

bosons. The EW covariant derivative acting on the Higgs doublet and the left-

handed fermion fields is
D, = 8, —igiY B, — igsW37°, (2.9)

with the generators 7 corresponding to normalized Pauli matrices, 7% = 0%/2, the
gauge couplings parameters g; and go, and Y denoting the weak hypercharge of the
object acted upon. The right-handed particles instead have

D, %8, —igVB,. (2.10)

In the fermionic term of Eq. (2.3)), the derivatives are contracted with the Dirac
matrices Y.
Ly accounts for the Yukawa interactions between the Higgs doublet and the

fermions. It contains on the one hand the leptonic contribution

oL (ygiicI)eiR n h.c.) , (2.11)

which features the leptonic Yukawa couplings 3. On the other hand, similar Yukawa

terms are introduced for the quark sector. In the so-called flavor basis, these are

Lo = - (Kj-l@@d; + Vg dul + h.c.) : (2.12)

where & % 1o9®. The coupling structure is encoded in two non-diagonal Yukawa

matrices Y;? and Y [80]. Finally, the Lagrangian also features the Higgs potential

def

V(®) = —1 2010 + \(dTD)2. (2.13)

2The SM does not include right-handed neutrinos v by construction.
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Gauge symmetry under the group SU(2), x U(1)y characterizes the EW La-
grangian as invariant under the concatenation of certain local U(1) and SU(2)
transformations (see e.g. Refs. [7981] and Appendix [A). The structure of the co-
variant derivative is taylored to enforce the general gauge invariance of Lgw
under these transformations. Nonetheless, the GWS model crucially accounts for
an instance of spontaneous symmetry breaking , whereby the initial symmetry
group is reduced to a subset thereof at the vacuum, i.e. SU(2);, x U(1)y — U(1)em-
This so-called Higgs mechanism [82H84] is realized by the spontaneous acquisition
of a non-zero vacuum expectation value (®) = v/+/2 by the Higgs doublet.
In the phase of broken EW symmetryﬂ the doublet is conventionally represented in

b — % <U 3 h) | (2.14)

featuring an excitation with respect to the VEV v — the Higgs boson h. The ground

a basis such that

state of the Lagrangian in Eq. only remains invariant under transformations
generated by the linear combination Q = 72 + Y, @ being the generator of the
U(1)em symmetry responsible for electromagnetic interactions. Its gauge field is the
photon.

After symmetry breaking, the kinetic terms of the Higgs doublet give rise to

L 1 aa)(l 0
Lin 2 5 (0 v) <§ng# + gpWiT ) (5913” + gQva“rb) (U)

102
= 57 (BOVD? + V22 + (—aW} + 91B,)?) - (2.15)

Recasting the gauge fields in a convenient diagonal basis such that

+ def 1 1 1172
WM = %(WM + ZWM) (216)
def 1 3
Zy = —=—=(92W, — 1 By) (2.17)
YVE+E T '
1
A E (W + 2B,) (2.18)
YoVg+g g

permits to identify the expressions in Eq. (2.15) as gauge field mass termﬂ (Ap-

pendix |A))
v v
mwi292§ ,mZ:\/g%+g§§ , my=0. (2.19)

3And in unitary gauge (¢ = 0).

“The photon will be referred to as v despite the gauge field appearing as A,,.
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CHAPTER 2. ELECTROWEAK THEORY IN THE SM

The two neutral fields A, and Z, are related to B, and Wj’ by

A, cos By, sin Oy, B,
= ) 2.2
(Zu> (—sin Ow cosbw | \ W} (2.20)
The mixing of B, and Wi’ is determined by the Weinberg angle 0y, . Its value can

be captured by the relation [85]

myy+

cos Oy = (2.21)

mz )
The Higgs mechanism also grants mass terms to the fermions. Symmetry breaking

renders the leptonic Yukawa term

l
,Cl SE; o Yi
Yuk \/§

such that the charged lepton acquires a mass

(v+ h)(l'e} +h.c.) (2.22)

Mg = =0, (2.23)

In the quark sector, a convenient mass basis allows to diagonalize the Yukawa matri-
ces into appropriate matrices My and M, for the down- and up-type quaks, with the

respective diagonal components y*" for i € {1,2,3}. Under the Higgs mechanism,

Eq. (2.12) becomes

d u
22 BB _an | Yididi + Yigihi e 2.24
Yuk ( ) \/§ LYR \/5 R ( )
with the mass terms .
mbe = Yi_y (2.25)

C T
and the apostrophes denoting the quark fields in the mass basis. The misalignment of
the mass and flavor states is quantified by the complex unitary Cabibbo-Kobayashi-
Maskawa (CKM)]) matrix [86, 87]. The irreducible complex phase in this matrix is
an experimentally verified source of CP violation in the SM [88-90].

Finally, the Higgs boson mass arises from the curvature of the potential at

its minimum as

my = V2. (2.26)



Chapter 3

Quantum field theory essentials

Much of the physics in Lagrangians like Eq. is hidden in certain parameter
relations. For example, in a ¢*-theory with spontaneous symmetry breaking as
encountered in Eq. , the parameter relations at the potential minimum ¢,
define the mass of the field. The significance of the potential minimum is somewhat

more general in that it classically marks a minimum of the Minkowski action

Suld] / e £(6). (3.1)

This classical action sources the physics of a quantum field theory (QFT]). An elegant
way in which the physics can be invoked is provided by the path integral formulation

of QFT. It rests on so-called grand canonical partition functions |91]

2% / D exp [z (SMWH / d'z J(:c)qb(:z:))] (3.2)

where D¢ is the path integral measure and J(x) an external current. Z[J] is also ap-
propriately known as the generating functional of correlation functions: n functional
derivatives of Eq. with respect to J(z) generate n-point correlation functions
G (ny like the propagator (n = 2). This motivates the suggestive reexpression of Z[J]
as [91]

zZ) =% g/d4x1...d4xn T (@) o d (@) Gow (21, o) . (33)

A perturbative diagrammatic expansion of Z[J] allows to recover the physics of the
system in terms of Feynman diagrams.

Corrections induced by loop diagrams will tend to complicate simple tree-level
parameter relations at minima of Sy;. Hereby, the procedure of tying physical
observables like the mass to critical points in the action becomes somewhat patho-

logical. A mathematical remedy to the ills of the classical action becomes necessary;

10



CHAPTER 3. QUANTUM FIELD THEORY ESSENTIALS

going even further, perhaps a surrogate object altogether that allows to “read oft”,
for example, the vacuum state of the full, loop-corrected theory. The quantum effec-
tive action and the corresponding effective potential are precisely such objects and
their importance to studies of SSB shall be motivated in this chapter for later use.
This will simultaneously serve to settle basic concepts and conventions in QFT and
finite-temperature field theory assumed throughout the rest of this work.
For most of the physically meaningful purposes, only a subset of the graphs
generated by Z[J] is of interest — the so called connected diagrams. A tool that
systematically removes disconnected graphs from the picture is the generating func-
tional W/[J] of connected n-point functions. Such a generating functional can be

defined via

Z[J) = exp (iW]J)) <= WJ] L —ilog(Z[J]). (3.4)

In analogy to the formalism for Z, connected n-point correlation functions an)
will emerge from n-th functional derivatives with respect to J(z). Thus, W[J] also

admits the suggestive expression [91]

iW[J] = Z%/d4x1...d4an(x1)...J(mn) Gl (@1, e T) (3.5)
n=0

The physics of connected diagrams is ultimately sourced by the so-called quantum
effective action Iy, akin to Sy in Eq. (3.1)) in the classical formalism. I'y; is obtained

from W[J] via Legendre transformation to a suitable field coordinate defined as

~ .\ det OW]J]
@)= 570

(3.6)

¢ is a background or mean field which averages over quantum fluctuation effects. In

terms of ¢, the effective action is formally given by [91]
Culd) W) - [ () (0). 3.7)

The definition in Eq. (3.7) possesses a number of interesting properties. First of all,

it suggests the quantum field equation

oL [¢]
dp(x)

For vanishing external currents J(z), Eq. (3.8) identifies critical points of the action

= —J(). (3.8)

of the full, loop-corrected theory such as the vacuum state ¢mi,. This was the

11



primary motivation in introducing the effective action formalism. It is stressed that
fields ¢ = ¢(x) which satisfy Eq. (3.8) in a translationally invariant theory will not
depend on z, i.e. they are to be understood as constant background fields. A second

property is suggested by an expansion of I'y; as [91]
_ >~ 1 _ _ "
Tulg) =Y — /d4m1...d4xn B(x1) e G(wn) T (21, ...y ) | (3.9)
= nl

The FS\Z) are one-particle irreducible correlation functions and formally rep-
resent effective n-point vertices that take into account all possible quantum (loop)
corrections. Eqs. and thus lay bare the full power of the effective action
formalism: it serves to sweep into the vertices all of the quantum loop effects of a
theory. In so doing, it confines many of the crucial physical aspects to a localized
object of study, the effective potential.

The effective potential is paramount to model-building, as Parts |lI| and will
showcase. The interactions it encodes are what define the physics of a QFT aside
from the pertinent gauge symmetries of the model. Assuming a translation- and
Lorentz-invariant theory, the effective potential can be interpreted as the surviving

term in |91]
Tyld] = / d'z (ckm(@ - Veﬁ(é))
— —/d4x Veer(0) . (3.10)

In the last equality, the constancy of the fields cancels the kinetic derivative terms.
Furthermore, it reduces the integral of Eq. (3.10) to a space-time volume factor and

renders the expression [79]

Pulg] = =(V- T)Vear(9) (3.11)

Eq. (3.11]) shows that the formalism reconciles the critical points of I'y; and Vog. In

particular, at the minima one recovers

0 - 0 -
—=Tu[g] = V(o) =0. (3.12)
¢ i 09 F=Fmin
The last equation indicates SSB for ¢ # 0.
The availability of an expansion for I'y; in Eq. (3.9)) and the close relation between

[y and Veg in Eq. (3.10]) suggest a convenient expansion of Vg itself. Indeed, in

12



CHAPTER 3. QUANTUM FIELD THEORY ESSENTIALS

momentum space, under the previous assumptions on the fields and the space-time

symmetries, an effective potential can be expressed as [91]

o -
_ ¢”
Vet (¢) = — Z HFS\Z) (pi=0), (3.13)
n=0
thus as sum of effective vertices with vanishing external momenta p;. In order to
calculate an effective potential to loop order m, each effective vertex Fg\’/}) needs to

account, for the possible 1PI diagrams with vanishing external momenta and up to
m loops. At zero-loop order, the fundamental tree-level potential Vi, of a theory is
recovered. Following Eq. , the one-loop contribution is obtained when the Fg(})
account for all appropriate diagrams with up to one loop. This prescription results

in the one-loop effective potential [91]

Verr(@) = Viree (@) + Vew(9) (3.14)

with Vow(¢) signifying the Coleman- Weinberg potential brought about by
the one-loop corrections [92]. Radiative corrections such as the ones accounted for
by the CW potential are known sources of SSB and hence need to be tracked when
a model is set up. Chapter |8 will provide the necessary details to tackle the model
setup in Chapters [I0] and

The path integral formulation of field theories followed throughout this chapter
greatly lives off its analogy to statistical mechanics and thermodynamics. This anal-
ogy reflects, for example, in the extensive character of the effective action displayed
in Eq. [79]. The analogy has motivated the so-called Fuclidean formulation of
field theories typically encountered irﬂ the study of phase transitions and nucleation
theory, which shall be addressed in Chapter [l The Euclidean formulation relies on
a so-called Wick rotation of the temporal coordinate, i.e. 7 ©F it Under its effect,

the fundamental quantity Sy is redefined into its Euclidean version [93, 94]

Seld) = ~iSulol = [ dr [ #rL(0). (3.15)
This change then permeates the entire effective action formalism. In particular, it is
noted for later purposes that the effective potential will be related to the Euclidean
effective action I'y = —iT'y; as [95]

red) = [ ar [ @aVia(d). (3.16)

'But of general applicability.
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This reformulation of field theory owes its name to the Euclidean space-time struc-
ture recovered under the Wick rotation. All space-time dimensions are thus widely
treated on an equal footing, especially so in zero-temperature QFT. However, FTFT
usually exploits this formulation in order to stress the analogy to thermodynamics
and reinterpret many quantities as thermal averages. In Minkowski space-time,
FTFT applications typically compactify the temporal variable to ¢t € [0, —i3], with
the inverse temperature § = T~!; the Euclidean formalism instead utilizes the less
cumbersome 7 € [0, ].

FTFT lends itself to an effective action formalism as outlined for the zero-
temperature case. Besides introducing the pertinent thermal contributions to the
potential, it generalizes the property to thermal systems. Bridging the con-
ceptual gaps in a sufficiently subtle re-derivation is beyond the scope of this WOI"kEI.
However, thermal effects will play a crucial role in future chapters and need to be
acknowledged at this point. At high temperatures, such effects can restore symme-
tries that appear spontaneously broken at low temperatures [97H100]. That is, a
certain symmetry is regained when thermal effects overpower the effective potential
at zero temperature. Models presenting this behavior thus possess distinct
symmetry phases between which they transition. In the SM, the EW sector is char-
acterized by such a phase transition. Its exact nature is crucial to the viability of
EWBG and will be addressed in Chapters [6] and [/} Implementational details of the
CW and thermal effective potentials necessary to Part [[I]|are postponed until Chap-
ter [§ and the corresponding finite-temperature Feynman rules can be retrieved in
Appendix Bl Finally, a point regarding notation: for the sake of clarity throughout
the equations, background fields will not be distinguished graphically as ¢ beyond
this chapter.

2Readers are referred to Refs. [91, 95, 96| for excellent introductions to FTFT.
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CHAPTER 4. BARYON NUMBER VIOLATION AND YANG-MILLS VACUA

Chapter 4

Baryon number violation and Yang-

Mills vacua

4.1 Violation of baryon number conservation in

the SM

One of the fundamental requirements for baryogenesis is the violation of baryon
number conservation — a condition the SM may seem at odds with: no perturbative
process conceivable within the theory seems to violate this apparent conservation
law. As baryon number violating events — such as proton decay — have yet to be
observed, the experimental status quo is all but encouraging [38-43]. However, it
turns out the SM possesses the tools to accommodate for baryon number violation
via so-called anomalies. Anomalies manifest when symmetries of a Lagrangian are
not shared by the functional measure of the theory. As a result, classical Noether
conservation of certain currents may be violated at quantum level. A prime example
is the Adler-Bell-Jackiw anomaly, which features the violation of the chiral
current in a U(1) theory with chiral fermions and is related to the non-zero amplitude
of certain triangle diagrams [101} |102].

Crucially, anomalies permeate the EW sector of the SM. The so-called (B + L)
anomaly is the keystone to EWBG [103]. As the name suggests, it provides a
pathway for the non-conservation of the joint baryon-lepton number (B+L) and thus
a backdoor to baryon number violation. A very general method for its evaluation
is provided by the path integral approach [104} [105]. The starting point is the

generating functional [30]

Z = / DYDY o/ d'olow — / DIDT e (4.1)
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4.1. Violation of baryon number conservation in the SM

with the EW Lagrangian introduced in Chapter 2] A first inspection of the covariant

derivative structure in Lgw reveals the existence of baryonic and leptonic currentsﬂ,
Th=Y" o (4.2)
- 3

TE=) (I + o) (4.3)
l

They emerge as classical Noether currents of global field transformations of the

fermions,

U(x) — @t81)0 g (z) (4.4)

U(z) — U(x)elattn)d (4.5)

with {a = g, b = 0} corresponding to a baryon number rotation and {a = 1, b = 0},
to a lepton number rotation. Under these transformations, the generating func-
tional remains invariant. The physical manifestation of these symmetries is
the apparent conservation of B and L.

Despite their solid grounding, these conservation laws break down beyond the

classical setting [106]. Interesting quantum effects can be captured by treating the

parameter 6 in Eqgs. (4.4)) and (4.5) as a local quantity,

U(z) — e'@tt1)0@) g (g (4.6)

U(z) — U(z)elattns)@) (4.7)

By virtue of the equivalence theorem of QFTs, physics needs to remain invariant un-
der such field redefinitions |107H109]; thus, no new result is expected. And yet, this
change is deceptively innocent: under the new prescription, not only the Lagrangian
but also the functional measure changes — and it does so in a non-trivial way. On
account of the ABJ anomaly, the chiral components of the new transformations do
not correspond to symmetries of the functional measure, rendering the Jacobian of

the transformation non-trivial. Specifically, the transformed generating functional

Z' = / DYDYV = / DUDVeSineiSHS) (4.8)

Here the quark Dirac fields are denoted by ¢, ¢. Those of the charged leptons go by [ and [;

those of neutrinos, by v; and 7;.
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CHAPTER 4. BARYON NUMBER VIOLATION AND YANG-MILLS VACUA

features the new contributions |30} |75]
58 = - / d'z [if(x) m (279 — 1) (@) + U(w)7* (@ + bys) W () wx)] (4.9)

and

. 4 (a—10) Lyuv (L (a+D) R)uv (R
Siac = z/d z6(x) {Wﬁ [FEm D] — oz I [FEm DT (4.10)

Here, m is the nominal fermion mass; FU" and FU# are the generic field
strengths coupling to left- and right-handed currents (i.e. {W* B} and B*,
respectively), and F w = %e,u,paF 77 defines the dual field strength tensors. Partial
integration of Eq. removes any dependence on d,0(x) and, on the whole, the
invariance condition for the generating functional can be made independent of 6(z)

[30]:

9" [U(2)y, (a+bys) U(2)] = —2ibmU(z)5 0 (x)

(a—D) Lypv (L (a+b) R)uv (R
— ZWTI‘[F( e —|—ZWT1"[F( O

(4.11)
For the tuples {a,b} introduced earlier, the left-hand side of Eq. (4.11]) gives the
baryonic and leptonic current divergences 0,Jp and 0,J;. The right-hand side,
however, only vanishes if a = b = 0. Therefore, the generating functional cannot be
invariant under Eqgs. (4.6) and (4.7) and the current divergences must be distinct

from zero. In fact, it can be shown that [75]

. NF auvyrra VD

0,01 = Z—32W2(—95W W, + g B" B,,) (4.12)
. NF auvyira s

0, J1 = i35 (—gaWH W, + gt B" B,) | (4.13)

with N the number of fermion families and the coupling and tensor conventions
of Chapter 2] The baryonic and leptonic currents are each not conserved — which
discards B and L as fundamentally conserved charges. Furthermore, it is noted that
the conservation of both charges is violated by the same quantity. Thus, it is natural

to consider the joint currents Ji,, = Ji £ J;'. They behave as

Oudp i = (—gy W™ Wy, + g1 B* B) (4.14)

AF
1672

9,8, =0, (4.15)
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4.2. SU(2) and its vacuum structure

therefore suggesting the violation of (B+ L) and the conservation of (B—L). Baryon
number violation AB is thus very much feasible within the SM and arises naturally
in processes where (B + L) is violated: since the baryon number can be decomposed
into orthogonal components as

(B+L) (B-1L)
2 * 2 ’

B = (4.16)

the conservation of (B — L) implies

AB = w. (4.17)

Any physical process able to couple to and violate the conservation of (B + L) will

in turn violate the conservation of B.

4.2 SU(2) and its vacuum structure

The results of the previous subsection are in fact not just a happy accidentﬂ but
symptomatic of a profound misunderstanding. In order to emphasize the situation,

the baryonic divergenceﬂ may be recast in terms of derivatives,

Np

Ol = i%<_g§au[(u + Q%aukﬂ) , (4.18)
with the definitions |75]
k< 2eP (9B, By) (4.19)
KW def 2 pvaf afrra 1 atr7byr7¢
= 2" (0, WaW§ — §g26abCWl, WoWsg). (4.20)

The quantities k* and K* will be related to the vacuum structures of the U(1)
and SU(2) sectors, respectively. A typical treatment of Eq. would involve a
redefinition of the current Ji set out to cancel any boundary terms arising from the
integration of d,J5. Thereby, Eq. would vanish altogether and suggest the
conservation of B after all. While such a procedure is well-behaved for the term
0,k", it does not hold for the term 9,K*", as the exotic vacuum structure of the

SU(2) sector renders its boundary contributions inherently non-trivial.

2 As opposed to the “accidental symmetry” that the conservation of B would entail [110].
3And of course all other divergences derived in the previous subsection.
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CHAPTER 4. BARYON NUMBER VIOLATION AND YANG-MILLS VACUA

A general feature of Yang-Mills theories is their rich vacuum topology as com-
pared to that of abelian theories |[I11H115]. A naive but natural guess as to the
Yang-Mills vacuum would be WY*(z) = 0, which causes the SU(2) kinetic terms
in Eq. to vanish. However, in line with the gauge transformation behaviour
defined in Eq. , the nominal vacuum is not unique, and the family of pure
gauge images defined by

W (z) = g—z U(2)0;U () (4.21)
with SU(2) matrices U(x) features infinitely many degenerate ground states. These
states all seem a priori physically identical, merely differing in a perceived math-
ematical artifact. Similarly, one could think of a particle living on a circle with a
designated ground state, as in Fig. .1} after a full trajectory along the circle, the
particle lands on the same ground state |75, (114].

This notion of the Yang-Mills vacuum is fundamentally erroneous: different
classes of vacua can be identified which need to be treated as separate, distinguish-
able entities, akin to counting the integer-valued winding number of the particle on

the circle. To show this, the following discussion will be limited to the subset of

gauge transformations U(x) such that
Ux) =1 as |z| = o0 (4.22)

(or, more generally, some constant, unitary matrix as |z| — oo [114]). This condition
pursues one goal: it restricts the argument to vacuum states separated by finite

actions, which are the ones of interestﬁ In so doing, it compactifies the original

Figure 4.1: A particle living on a circle, with the ground state at the bottom. If the particle has
enough energy to perform a full rotation, it lands on a physically identical vacuum with a different

winding number. Adapted from Ref. [114].

4As transitions only happen between such vacua.
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4.2. SU(2) and its vacuum structure

coordinate space upon its projectiorﬂ onto SU(2) group space via U(z). As now both
R* ~ 83 and SU(2) ~ S3, it follows that the functions U(x) represent mappings

U(x): S5 — S e - (4.23)

range

Such mappings possess a very general property: they cover Sf’ange n-times upon one
closed loop over S3 . The number n of coverings or windings induces a natural
classification of the mappings into different topological, so-called homotopy classes.

Mappings U(x) within the same homotopy class are homotopically equivalent:
they can be continuously deformed into each other without changes to the funda-
mental properties of the object. In particular, the number of coverings n they induce
on S5 .. — formally, the topological degree of the mapping — is left untouched [115].
n thus acts as a conserved topological charge; all U, (z) sharing the same charge
define one and the same ground state in Eq. . Gauge mappings in different
homotopy classes, however, will define topologically inequivalent ground states, i.e.
ground states associated to different charges n and m. Integers and integer charges
cannot be continuously transformed into each other. Therefore, if transitions be-
tween homotopically distinct vacua occur, they will sweep non-vacum configurations
on field space along the way [116]. This justifies the quasiperiodic vacuum structure
of Yang-Mills theories portrayed in Fig. A slightly pedantic point is in order
which should help mantain formal clarity: one needs to distinguish between the
charge n of the object U,(x) — a gauge transformation acting on some state which
may be different from W]Vac(x) =0, as per Eq. — and the topological
charge of the vacuum state thereby defined via Eq. .

It is now possible to address the opening issue of this subsection. In Eq. ,
the divergence of the baryonic current was rewritten in terms of two convenient
quantities, K* and k*. These quantities are the so-called Chern-Simons currents

of the SU(2) and U(1) sectors and define the corresponding Chern-Simons (CS))
charges (75}, [106]

2
def Yo 3, 10
Neg = K 4.24
cs = 353 /d x K (z) (4.24)
nes = o /d?’az K(x). (4.25)
3272

5U(z) : R* — SU(2) group space. Furthermore, SU(2) ~ S2 on account of the su(2) Lie algebra.
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E(Nes)

AB = -3 AB =43

Nes

Figure 4.2: Energy of the gauge field configuration as a function of Ngog. Transitions between
the ground states bring about a change in the system’s charge N¢og. The difference can be positive

or negative. Hence, the change in B is also sign-dependent. Adapted from Refs. |74, [114].

Nes reflects the topological charge of the Yang-Mills vacua: for each vacuum defined
by a class of mappings U,(z), Eq. delivers the charge Nog = n. For a
transition between two vacua defined by the classes of mappings U, (z) and Uy, (x),
n # m, arises a change ANgs = n—m. The latter cannot emerge in the topologically
trivial abelian case, i.e. Ancg = 0.

Defining the baryonic charge as

B défz’/dt/dgzvﬁujg, (4.26)

one gathers from Eq. (4.18]) that a transition between vacuum states in a finite time

interval At = t; —¢; results in a net violation of baryonic charge conservation by

ty
AB = z/ dt/d?’xaujg;
t;

_ N tfdt Px (G20, K" — ¢20, k"
= 392 . f(gz (0 — §10u )
N Y
(x) IVF
= 35,7 {/ dx (g%KO — g%ko) ]
t;
= NF : (ANCS - ATLCS)
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4.2. SU(2) and its vacuum structure

At (x) it is assumed the calculation is carried out in a gauge such that the spa-
tial components K; vanish at infinity; the non-triviality of the SU(2) vacuum is
thus swept into K altogether [116]. For transitions between adjacent minima and
assuming the SM fermion content, one obtains a violation of the baryon and lep-
ton numbers by three units, AB = AL = 4+3. Thus, such transitions violate the
composite charge B + L by A(B + L) = +6.

The last few pages should sufficiently motivate the interest in processes by which
such vacuum transitions take place: so far, they are the only known baryon number
violating processes within the mathematical architecture of the SM. Nonetheless, one
important question remains open — namely, the exact transition process. Naively,
two scenarios are possible. On the one hand, one should consider quantum tunneling
between the vacua of Fig. 4.2l These transitions correspond to so-called instanton
processes in the SU(2) EW sector, which have been widely investigated. With an
amplitude the order of 10717, their suppression is manifest [103]. There also exists
the possibility of classical, thermally-aided trajectories over the barrier. Such is the

class of the sphaleron process which this work studies.
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CHAPTER 5. THE ELECTROWEAK SPHALERON

Chapter 5

The electroweak sphaleron

The sphaleron is a field configuration which catalyzes transitions between the topo-
logically distinct Yang-Mills ground states. In Fig. it would correspond to half-
integer states and sit on top of the barrier. More precisely though, the sphaleron is
a saddle- point in field configuration space C (hence its name, Greek for “ready to
fall” |75]). It needs to be understood as the least-energy configuration interpolating

between vacuum states atop a multidimensional potential barrier, as represented by

Fig. 5.1}

Energy

configuration
space

vacuulin

Nes=0

Figure 5.1: The sphaleron configuration (red) corresponds to the lowest-energy mountain pass
between adjacent minimima in the Yang-Mills potential, quasiperiodic as a function of the Chern-
Simons number N¢g . (Copyright ©Koichi Funakubo)
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Revealing the existence of saddle-points of the energy on C was the great achieve-
ment of Ref. [54]. At its core, the proof consists in showing that C is topologically
equivalent to a manifold M of non-zero genus (i.e. with holes, as in Fig. [5.2]). This
follows from the existence of non-contractible loops of mappings on C and ties in
closely with the vacuum structure described in Chapter 4l Yang-Mills vacuum states
associated to different topological charges n and n’ are connected by trajectories on
C which topologically correspond to loops that wind the hole An = |n — n/| times.
For An = 1, there exist loops that correspond to transition trajectories between
adjacent ground states separated by the potential barrier, as depicted in Fig. |5.1
The path of least action crosses the barrier along the lowest-energy mountain pass,
i.e. the static, lowest energy configuration atop the barrier. This configuration cor-
responds to the EW sphaleron. This section will outline its mathematical structure,
closely following the original construction in Ref. [54] as well as two more peda-

gogical reviews thereof in Refs. [115, [11§]. Additional details can be inferred from

Appendix [E]

Figure 5.2: Manifold M with a hole. In red, a non-contractible loop on M, i.e. a loop which

cannot not be homotopically contracted into a single point.
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CHAPTER 5. THE ELECTROWEAK SPHALERON

5.1 Sphaleron field configuration

The character of the SM EW sphaleron is governed by the standard Higgs doublet
® and the three SU(2) gauge fields W, whereas the fermion fields are largely
negligible. Furthermore, the initial discussion will be restricted to a pure SU(2)
sphaleron, whereby the mixing angle #y, and therefore g, are assumed to vanish.
Thus, the U(1)y field B,, decouples and can be set to zero for the present purposes,
as can the corresponding field strength tensor. Strictly speaking, this assumption
is justified a posteriori given the negligible effects induced by B,,. At any rate, this
ansatz will be amended later on for the sake of completeness and in order to account

for the physical mixing angle. For now, the bosonic EW Lagrangian is truncated to
1 a auv
L= —gWoLWwe (D,.®)! (D) — V(®), (5.1)

with the tensor and covariant derivative structures introduced in Chapter 2] The

Higgs doublet is evaluated in unitary gauge and in the conventional basis that sees

I {0
-5 0). -

where h is the CP-even component that obtains a vacuum expectation value v in

the phase of broken EW symmetry. The SM tree-level Higgs potential introduced
in Eq. (2.13) and appearing in Eq. (5.1]) can then be expressed as

V(®) =\ (qﬂ@ ~ %&)2 (5.3)

and the Lagrangian is fully characterized. This minimal approach to the EW

sphaleron defines the static energy functional [54]

a def 1 a aij %
EWS, @] = /dgm L_LVV”W I+ (D;®)(D'®) + V(@)} , (5.4)
with {a,i,7 = 1,2,3}, on the infinite-dimensional manifold of field configuration
space C. While the functional ([5.4]) sets the stage, the prescription for a saddle-
point in configuration space is incomplete without a field ansatz. Ansétze usually
presuppose some degree of understanding of the fields, which in this case may not be

entirely intuitive. However, a first-principle reexamination of the theory will provide

a number of helpful insights [54} 115, 118].
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5.1. Sphaleron field configuration

First of all, physicality of the sphaleron field configuration requires finiteness of
its energy. This is accomplished if the fields reach their known vacuum values at
spatial infinity. Secondly, it is necessary to partly fix the gauge. Otherwise, there will
always exist a flat direction on C associated to the gauge symmetry for every field
configuration, thus rendering saddle-point searches inherently pathological. Both
requirements are best implemented in spherical coordinates (¢, 6, ¢), with £ = govr
a convenient radial coordinate. A radial gauge condition — which will be relaxed
later — has the gauge fields satisfy W¢' = 0 everywhere; their remaining components
will start at the canonical vacuum and need to reach an adjacent gauge image of
the vacuum at spatial infinity. Similarly, the Higgs field h needs to converge to v at

spatial infinity. A useful piece of notation defines the Higgs doublet at infinity as
> (0,6) < Jim & (£,6,9). (5.5)
—00

The boundary condition on h requires the 2-manifold defined by (5.5 to fulfill

2 (0.0)| = 75 (5.6)

for all # and ¢. While this greatly constrains the behaviour of &> it is not yet

uniquely defined. A last gauge freedom is exhausted by requiring

(9 = 0,0) X % <(1)> , (5.7)

which is identified with Eq. (5.2) for (h) = v and thus uniquely fixes the Higgs

vacuum configuration. The canonical vacuum of the theory is thus given by

m&@Wﬂ,émww:%G> (53)

The non-contractible loop on C of Higgs vacuum manifold configurations at in-

finity is given by [54]

oo g o ydef [OF) v sin 1 sin 0 €'
=0, 911) = <CI>§°> V2 <e_i“ (cos p+ isinpcosf) | (59)
It takes an external loop parameter p € [0, 7] and thus starts and ends at (5.7)).
When the gauge is completely fixed, Eq. (5.9)) describes a loop from and to one

identical vacuum. It can be reinterpreted as the path in Fig. that attains the

sphaleron configuration for some p by lifting the radial gauge condition on the W*.
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CHAPTER 5. THE ELECTROWEAK SPHALERON

For all choices of {6, ¢, u}, P> needs to be a finite-energy configuration. This
constrains the asymptotic behaviour of the kinetic terms of ®>°. In particular, it

implies the angular covariant derivatives [54} [118]
Dyd™ (0, 6 ) = 0 Dy (6, 6:11) = 0. (5.10)

Generality of Egs. ((5.10)) holds if the covariant derivatives, and thus the correspond-

ing components of the gauge fields, meet a certain structure. The U(2) matrix

- . \/§ P*  Poo
defined such that
¥ (6,050 = U~ 0,010 () (512)

for all 6, ¢ and p, provides the necessary ingredient. The angular components of
the ‘pure’ gauge field at spatial infinity can be fixed asﬂ

def

H U U)W e &

Wee (6, s ) ~ Lo, U=t (5.13)

92
and make sure that Eqgs. (5.10]) are melﬂ The tools at hand allow for a general

ansatz of the Higgs and gauge fields as [54]

D (&,6, 03 10) = h(E) @ (6,61 p) + (1 — h(€)) —= ( ’ ) (5.14)

/2 \ e ¥ cos pi
We (€,0,¢;1) =0 (5.15)
Wo (€,0, ¢ 1) = f(E) W5~ (0, 63 1) (5.16)
W (§,0, 65 1) = [(E) W (0,05 1) - (5.17)

With this choice of functions, and omitting the explicit radial dependence of f and

h for the sake of clarity, the energy functional (5.4)) can be rewritten as [30]

CAmy [ df\* . 8 _ & (dn\?
e =" [ dssmm{lzl(d—é) bl sl + 5 ()

+[h(1 = ) = 2h(1 — h)f(1 — f)cos®u + (1 — h)*f? cos*u

+ %fz(hz —1)? SmeJ} (5.18)
495

!The condition of U(x) being an SU(2) matrix is lifted |54]: the loop in C along vacua of the
Higgs doublet and between SU(2) vacua sweeps non-vacuum states of the latter, as discussed in

Chapter
2 An explicit proof can be recovered in e.g. Ref. [118].
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5.1. Sphaleron field configuration

in agreement with Ref. [54]. The fields should be well-defined at the origin. Fur-
thermore, the ansatz needs to behave as expected at spatial infinity, i.e. converge
to the desired vacuum configuration of the fields, such that the sphaleron energy

attain a finite value. This motivates the boundary conditions

lin h(€) = 0 lim £/(6) = 0 (5.19)
lim h(¢) = 1 lim ()= 1. (5.20)

which fully characterize the sphaleron and its energy. The value of p emerges from
the requirement that it deliver a configuration along the loop of ®> atop the po-
tential barrier. Ref. [54] showed this will in general be the case for u = 7/2, as it
maximizes the termsEl in £ and thus marks the barrier top along the path between
vacua. This further characterizes sphalerons as field configurations with half-integer
Neg sitting midway between states of integer-valued Neg [55].

The radial field profiles f and h corresponding to the mountain pass of minimal

energy — thus, a saddle-point — are obtained by solving the Euler-Lagrange equations

that follow from Eq. (5.18) [55]:

d2f 2
fzd—g=2f(1—f)(1—2f)—zh2(1—f)
a /,db oA (5.21)
5 (£55) =20 12 S0 - n,

This set of equations is yet to be solved analytically. Integration of approximate
solution ansitze and numerical solutions to the field equations as shown in Fig.
place the sphaleron energy for the tree-level SM in the range 9 — 10 TeV [30]. Slight
shifts to, in general, lower energies will arise in the presence of a non-vanishing
U(1) field. Introducing a profile function ¢(§) for the U(1) field, such shifts can be
calculated perturbatively as [55]

ag =200 [T acen(o) [1- 76 ao). (5.22)

Details on the U(1) corrections can be found in Appendix [E]

3Although, as the original paper states, this might not hold for all terms for contrived choices

of f and h [54]. After all, and as Ref. [119] notes, the original construction proves the existence
of a sphaleron in EW theory, i.e. the canonical sphaleron presented here and generally considered
for EWBG in the literature; it does not rule out the existence of other sphaleron-like solutions or
saddle-points of £. At any rate, neither f, h nor u are to be understood as a free choices in the

standard construction, but as consequences of the saddle-point condition on &.
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CHAPTER 5. THE ELECTROWEAK SPHALERON
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Figure 5.3: Field profiles f(£) and h(§) in the tree-level SM as a function of the dimensionless

radial coordinate £ = govr. These curves were obtained using a relaxation algorithm (see Chapter

9)-

Although this section has introduced the sphaleron at zero temperature, this work
is mainly interested in both its energy and its effects at finite temperature. The
calculation of £ at finite temperature is straightforward from Eq. , merely re-
quiring the replacements of v and V' (¢) by their temperature-dependent equivalents.
Thermal effects, however, raise additional questions. Sphalerons are phenomenolog-
ically bound to the phase of broken EW symmetry [75]. They are saddle-points of
Eq. featuring a doublet (®) # 0, a feature not shared by the EW symmet-
ric phase. The nominal “sphaleron” configuration does not exist in this phase, yet
potential barriers between the SU(2) vacua still do. They must still exist, as the
SU(2), vacua remain topologically distinct. Despite the lack of a sphaleron config-
uration, transitions do still take place in the symmetric phase by means of gauge
field configurations which, as the sphaleron, are able to prompt ANgcg = 1. In line
with the general lack of semantic nuance found in the literature, this work will be
generous in its use of nomenclature and still refer to “sphalerons” when discussing

transitions before EWSB.

5.2 The sphaleron rate

In Chapter [ the late assumption that over-the-barrier transitions can deliver a

statistically meaningful source of baryon number violation provided the motivation
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5.2. The sphaleron rate

behind the present chapter. The rate of such processes thus requires closer inspec-
tion. In the symmetric phase, transitions between SU(2); vacua are particularly

enhanced. On dimensional grounds, their rate per volume can be derived as [75]

1—‘5
%h ~ alk, T (5.23)
although more recent lattice calculations suggest up to ~ ag,7* [120, [121]. In the
phase of broken symmetry, semi-classical calculations are a typical procedure: a
sphaleron process can be modeled as a particle on top of a potential barrier over-

coming the latter in the correct direction. This approach, which yields [56| 122]

ngh w— awT ’ 6 &(T))T
V ~ 2 Mr(MotVrot) 4 O‘ITVT"{e_ ( )/
s T ’
4
w_ aw 4o (T) _s
= [2N (NootVeot) ——— | T == (/T 5.24
{th t>gv(T)} (47T) ( ga )" ’ (5:24)

suffices to characterize the relation of the sphaleron rate and its energyﬁ. Such cal-
culations require a careful treatment of the underlying symmetries of the system —
this is the origin of the normalization factors N, and N, as well as of the volume
factor of the rotation group Vs = 872. The rate also features ay = g3 /4,
which is the weak fine structure constant at zero temperature, which evaluates to
awr = awT/gv(T) at high temperatures. v(7) is the Higgs VEV at finite tem-
perature. w_ is the negative eigenmode of the saddle-point configuration atop the
barrier, while k is a determinant associated to the quantum and thermal fluctua-
tions about the sphaleron background configuration which drive the process [119,
123H125]. The full derivation of the sphaleron rate and typical values of the above
constants in the SM may be recovered in Appendix [F]

In view of this short discussion, as well as Eqs. and , one might be
led to question the significance of sphalerons. After all, nominal sphaleron processes
are Boltzmann-suppressed, not so the pure gauge field transitions briefly mentioned
above. As will become clear in Chapter [/} however, both behaviours are crucial

elements of EWBG.

4The calculation invokes a finite-temperature treatment as hinted at in Chapter [3; this is the
origin of the 1/T-factor in the exponential. A brief and conceptual introduction to rate calculations

is provided in Chapter ﬁ, while a derivation of the rate 1) can be found in Appendix
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CHAPTER 6. THERMAL PHASE TRANSITIONS

Chapter 6

Thermal phase transitions

One of the key features of the GWS theory is a phase transition in the EW sector of
the SM at EWSB. Although theoretical and phenomenological studies of the EW-
PhT in the SM have deemed it inadequate for the purposes of EWBG, experimental
verification of its nature remains pending [61H65l 126]. The mechanism of EWBG
takes advantage of the knowledge gap and relies on a first-order phase transition
with additional properties which may be realized in BSM scenarios. This chapter

reviews basic aspects of quantum and thermal phase transitions in preparation for

Chapter

6.1 First-order phase transitions

The free energy of a thermal system is essential in defining the nature of a phase
transition. For a system with a grand canonical partition function Z(7'), and ig-
noring any chemical potentials u, the free energy as a function of temperature 7T is
195]

F(T) Y —Tlog(Z(T)). (6.1)

In a volume V', the corresponding free energy density is given by

aet F'(T)
£ (6.2)

f(T)
The quantities F(T') and f(7T') arise naturally in the effective action formalism in
relation to ['[¢, T] and Vig(¢,T). Assuming translation-invariant, classical fields
in the sense of Chapter [3| and a Euclidean formulation of the theory such that
Lglo]l = (V/T)Veg(¢) as suggested by Eq. (3.16)), the free energy density of a model

can be related directly to the ground state energy of its effective potential as [95]

F(T) % Vige(min) + O (1°§V) | (6.3)
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6.1. First-order phase transitions

Phase transitions in general emerge as non-analyticities of the grand canonical free
energy density f(7') upon changes in the temperatureﬂ Phase transitions which
further exhibit discontinuities in the derivative of the free energy density are called
first-order phase transitions , as opposed to second-order phase transi-

tions (SOPhT]. Given relation (6.3 and assuming the analyticity of Veg(¢,T), it is
straightforward to show that [95]

df<T) o a‘/eff((baT) 8¢min + a‘/eff(¢7 T) o a%ﬁ"(ﬂx T)
dr Bl oT oT o7

(6.4)
¢=bmin

¢=¢min

The left-hand side term in parentheses after the first equality vanishes when eval-
uated at the minimum ¢y,;,. Discontinuities in df/d7T" therefore arise from discon-
tinuities in the temperature-dependent evolution of the ground state of Vig(o, T),
as showcased to the LEFT of Fig. . In comparison, SOPhTs display a smooth
evolution of the ground state, as suggested to its RIGHT. In FOPhTs, the minimum
¢min thus acts as an order parameter of the phase transition: its value will charac-

terize the present phase of the system. In many systems (such as the EW sector of

the SM), such a classification is binary and reduces to whether ¢, = 0 or ¢, # 0.

Figure 6.1: LEFT: Evolution of the potential in a FOPhT. The critical temperature 7. is defined
by the degeneracy of the minima at ¢ = 0 and ¢ # 0. The discontinuous phase transition takes
place at the nucleation temperature temperature T,, < T, (see section [6.4]). RIGHT: Evolution of

the potential in a SOPhT. As the temperature drops, the minimum develops away continuously.

T. is defined by the condition d*V,g(¢)/d¢?|4=0 = 0. Figures adapted from Refs. |74} [127].

L And the chemical potential p, if considered. Idem for df /du.
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CHAPTER 6. THERMAL PHASE TRANSITIONS

FOPQTs are also related to discontinuities in another quantity, the energy density
195]

def of
o(T) ™ f(T) =T

As the energy cannot simply vanish, there needs to exist a mechanism able to dissi-

(6.5)

pate the latent heat implied by the non-analyticity in e. FOPhTs transfer this energy
into the nucleation and growth of bubbles of the new phase. Bubble nucleation is
studied within the context of quantum and thermal tunneling through potential
barriers, depicted in Fig. |6.2 The essentials of the formalism will be addressed in

the following sections.

6.2 Barrier penetration and quantum tunneling

In quantum mechanics (QM)), the ground state energy E of metastable false vacua
is characterized by an imaginary component that induces a decay rate to a true
vacuum |95, (128, [129],

I'(E,) Y —2Im(E,) . (6.6)

The Euclidean path integral formulation of QM provides a method for the calculation
of such decay rates [130]. The central object is the Euclidean vacuum-to-vacuum

transition amplitude [131]

25l0) = (04]e " [62) = [ DweSHld, (6.7

for some point particle, where ¢, is to be understood as a QM state, H is the Hamil-
tonian of the system and Sg[¢] is the Euclidean action with a potential bounded
from below. This amplitude can be related to the energy FE, by introducing a

complete set of eigenstates such that

(pr]e” T |¢y) = Z e " (g4 n) (n] oy) . (6.8)

neN

For large times 7, the false ground state energy will become the major contributor

to the partition function,

lim (6] /17 |g,) ~ e BT, (6.9)

and hence defines the decay behaviour to leading order [131]:

I'=—2Im(E,) = %Im (log Zg[0]) . (6.10)
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6.2. Barrier penetration and quantum tunneling

V(o)

o o
Figure 6.2: Potential with two non-degenerate minima. In a quantum FOPhOT, the system tunnels
under the barrier at the origin [131].

On the whole, the study of tunneling rates reduces to calculating partition func-
tions of false vacuum transitions. Exact calculations of Eq. are notably dif-
ficult, and care is required in approximation schemes in order to avoid introduc-
ing non-physical artifacts. The semi-classical scheme that underpins calculations
relevant to this work is the saddle-point method [93]. It restricts the functional

integration in Eq. only to critical points of the action, i.e. points gfg such that

0Sk[d]
00 lo=5

—0, (6.11)

~

and so Zg ~ exp[—Sg(¢)]. When such points are saddle-points with suitable prop-
erties, the amplitude can be shown to be complex valued (see Appendix |C]),
thus inducing a transition rate in the spirit of Eq. .

The form of Eq. might suggest the adoption of this formalism by QFT.
Although illustrative, the QM approach cannot entirely capture the field theoretical
nuances beyond good order of magnitude estimates. Ultimately, formal subtleties

beyond the scope of this short introduction render the rate (6.10]) [131]
I' ~Im (Zg[0]) , (6.12)

amended by a prefactor A that accounts for the effects of quantum fluctuations.

~

Thus, with ¢ upgraded to a scalar field and Zg ~ exp[—Sg(¢)], a working definition

for the rate of false vacuum transitions in QFT can be obtained as [132} |133]

T~ Ae el 1+ O(h)] . (6.13)
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CHAPTER 6. THERMAL PHASE TRANSITIONS

6.2.1 The bounce

In principle, applying Eq. requires knowledge of all saddle- points (;3 for which
the action becomes sizeable, which could quickly become intractable. However,
semi-classical calculations typically single out one special saddle-point. It is the
solution to the classical equation of motion in the inverted potential —V'(¢). In this
picture, the prescription for paths starting at the false vacuum, climbing uphill
and returning to the false vacuum suggests a bouncing motion (LEFT of Fig. [6.3)).
Consequently, the associated field configuration is deemed the bounce [132]. It can
be shown that, despite the existence of a plethora of saddle-points, the decay rate
may generally be related back to the bounce action 134} [135]. This is but one of its

features. For a scalar field, the generic bounce action in D dimensions reads

sEl = [ @ (J000%0 4 V() | (6.14)

from which the Euler-Lagrange equation of motion can be easily derived. As Eu-

clidean time is assumed, Eq. (6.14]) is subject to an O(D) symmetry, which can be

exploited by spherical coordinates. Defining a radial coordinate p = (7'2 + |f]2)1/ 2,

the equation of motion can be cast as [27]

¢ D-1dp d
7 i d—¢V(¢) (6.15)

with the boundary conditions

lim ¢(p) = ¢+, (6.16)
d
—| =o0. 6.17
Il (6.17)

Bounce solutions ¢, to Eq. correspond to field configurations interpolating
between the false and the absolute vacua. They can be interpreted as the radial
profile of the Euclidean bubble and extremize its action Sg. Except for isolated cases,
bounce solutions cannot be found exactly and require either strong approximations
or numerical methods, most often in combination.

Back in Minkowski spacetime, competition between the volume and surface en-
ergies determines the nucleation of Minkowski bubbles (RIGHT of Fig. 6.3)). The
minimal radius R); at which these bubbles begin to exist is given precisely by Rg,

which further stresses the importance of the bounce solution.
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6.3. Nucleation in finite-temperature field theory

Figure 6.3: LEFT: Inversion —V(¢) of the the potential in Fig. Now in Euclidean spacetime,
the field rolls down from ¢, uphill to ¢_ and downhill again back to ¢. Adapted from Ref. [114].
RigHT: In Minkowski spacetime, bubbles nucleate with radius Ry; = Rg as soon as the outward

pressure generated by the volume energy ~ V(¢_) exceeds the inward acting surface tension [114].

6.3 Nucleation in finite-temperature field theory

Extension of nucleation theory to finite temperatures requires some attention to
detail. One important update is the replacement of the bare energy E by the free
energy F' in decay rate considerations, i.e. I' ~ Im(F'). Furthermore, symmetry
needs to be properly treated. As higher temperatures are considered, the time
coordinate 7 undergoes compactification as outlined in Chapter (3| and the original
O(D) symmetry is lost in favour of O(D — 1). The net effect of this change in the

formalism is

I op_
Splé] = 755 19l (6.18)
and the equation of motion becomes

d2¢ D-2d¢ d
Pr @V(gb). (6.19)

Furthermore, in a thermal setting, the dominant fluctuations prompting the transi-
tion will be of thermal nature. Thus, the nucleation rate in a thermal theory of four

spacetime dimensions behaves as [91], [136H13§]

I~ A(T) e SEUT  with  A(T) ~ T (6.20)
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CHAPTER 6. THERMAL PHASE TRANSITIONS

6.4 Electroweak nucleation in a thermal universe

The EWPhOT needs to be viewed in the context of an expanding thermal universe.
In the chronology of cosmic events, the EWPhT is theorized to happen while the
universe is still hot — 7' ~ O(10?> GeV) — and dominated by radiation. Its energy
density is thus [122]

p(T) = 9.(D)T" (6.21)

for g.(T) relativistic degrees of freedom. It governs an expansion described by the

first Friedmann equation |91} 122} 139]

HAT) = (%)2 = 3p1(\2 (6.22)

with the scale factor @ = a(¢(T")) and the reduced Planck mass Mp; = 2.43-10'® GeV
(see Appendix . The EW potential evolves as the universe expands and its tem-
perature decreases. The initial scenario typically considered in the SM and beyond
is one of restored SU(2), x U(1)y symmetry: the temperature-dependent effective
potential starts out with a global minimum at (®) = 0 at high temperatures such
that the ground state respect the full EW gauge group. With decreasing temper-
atures and assuming a FOPhT, the potential develops a local vacuum manifold M
for at least one (®) # 0. Degeneracy of this manifold with the minimum at the
origin defines a critical temperature 7., as suggested by LEFT of Fig. 6.1 For tem-
peratures below T, one point on M takes over via SSB as the global ground state
of EW theory, where the gauge group reduces from SU(2);, x U(1)y to U(1)em-
The phase transition is potentially viable as early as T, is reached. In practice,
for the transition to complete, at least one bubble needs to nucleate within the
cosmic horizon. As indicated in LEFT of Fig. this happens at some nucleation
temperature 7,, < T.. The requirement that nucleation probability reach unity
within the horizonEl sets a condition that defines T,, |91} 140, [141], i.e.
/ " arH ) Y / h % D(TYH4(T)

—00 n

4
_[TAr( ] 90 M) sy
_/ = ( T WT) e o(1) (6.23)

n

2 Adiabaticity in the expansion of the universe is assumed, i.e. a(t(T)) - T'(t) = const. at (x).
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6.5. The EWPhT in BSM physics

s T,

T,, is thus the temperature at which the phase transition sets in, often overlooked
on account of its cumbersome evaluation and the rough order-of-magnitude esti-
mate T, ~ T,. Its computational inconvenience notwithstanding, it is stressed that
Eq. represents a general constraint in searches for viable transition scenarios:
models featuring a critical temperature do not intrinsically get to satisfy the re-

quirement for nucleation, meaning the correct low-temperature EW phase may not

be reached.

6.5 The EWPhAT in BSM physics

An important feature of many theories beyond the SM resides in additional field-
dimensions of the effective potential on account of new, exotic fields. Typically,
models with extended scalar sectors — like the ones considered later on in this work
— have been shown to possess non-trivial phase transition dynamics [127], [142-150].
Furthermore, and depending on the model assumptions, high-temperature EW sym-
metry may be complemented by further symmetry requirements, such as an addi-
tional Zs symmetry [148]. Therefore, such models can present complex landscapes
of phase transition patterns. The transition to the present EW vacuum may thus
happen in several steps by virtue of intermediate phases, not all of which feature
instances of broken EW symmetry. The class of singlet scalar extensions (Chapter
11)) is a paradigmatic example: intermediate transitions may be restricted to the
new field dimensions, thus preserving the EW gauge group. More generally, these
multi-step scenarios may present a mixture of first- and second-order transitions.
While the latter require separate treatment, the former can be described in terms
of the physics outlined in this chapter. At any rate, the crucial element with re-
gards to successful EWBG in such scenarios is at least one instance of a first-order

EW-symmetry-breaking step.
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CHAPTER 7. ELECTROWEAK BARYOGENESIS

Chapter 7

Electroweak baryogenesis

7.1 Outline of the mechanism

EWBG is specifically tailored to match one of the strengths of the SM — its descrip-
tion of EW physics, with particular emphasis on the Higgs sector — while exploiting
the knowledge gaps in the present state of the art in order to incorporate all of

Sakharov’s conditions for baryogenesis (Chapter [1)):

(i) It features baryon number violation in the form of the sphaleron process in-

troduced in Chapters [4 and

(ii) It postulates a first-order EWPhT, as described in Chapter |§|, that provides

the required thermal off-equilibrium conditions.

(iii) It accounts, at the very least, for the degree of CP violation already present
in the SM, although this will be insufficient. Further sources of CP violation

can be added in SM extensions.

The fundamental idea behind the mechanism is that, under the off-equilibrium con-
ditions of a FOPhT, asymmetries in C and CP can be reprocessed by the sphaleron

process into a baryonic asymmetry.

Before the phase transition

The starting assumption is a primitive universe with no net baryon number. In
this early stage, the universe expands at a rate given by the temperature-dependent
Hubble constant implied by , where g.(7T) =~ 106.75 are the relativistic degrees
of freedom in the SM at T' ~ O(10? GeV) and Mp; = 2.43 - 10'® GeV is the reduced
Planck mass |122]. The universe is permeated by the symmetric EW phase with
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7.1. Outline of the mechanism

(®) = 0 and therefore sees baryon number violating processes thrive on account of
Eq. (5.23). However, thermodynamic equilibrium makes sure no net baryon number
arises: any single process generating new baryons will be countered by a process

inducing the same number of antibaryons.

Onset of the phase transition

As the temperature of the universe gradually decreases on account of its expansion,
the temperature-dependent effective potential develops a local minimum at a non-
vanishing value (®), and hence a phase where EW symmetry is broken. At some

temperature T,, < T., the first bubbles of the broken symmetry phase begin to

nucleate, as shown in Fig. [7.1} From then on, two phases with drastically different
features coexist, separated by the bubble walls: whereas sphalerons remain highly

active in the symmetric phase, they become heavily Boltzmann-suppressed within

the bubbles (Eq. (5.24))).

Figure 7.1: When the phase transition sets in, bubbles of the broken phase appear throughout

space. The bubble wall is comprised between the continuous and the dashed lines. Adapted from

Ref. [30].
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CHAPTER 7. ELECTROWEAK BARYOGENESIS

Effects of C and CP violation

The structure of weak interactions makes sure that C symmetry is violated maxi-
mally in the SM. The Yukawa interactions in the quark sector in turn are endowed
with an irreducible complex phase and thus CP violation on account of the CKM
matrix (Chapter [2]). These ingredients source C and CP violating interactions with
the bubble wall, i.e. transmission rates into the bubble[l will differ between particles
and antiparticles as well as between (anti-)particles of different chirality [151}, [152].
In the scenario showcased by Fig.[7.2], the nature of these interactions with the bub-
ble wall results in a surplus of quarks within the bubble, whereas antiquarks will
dominate in the symmetric phase. Overall, a CP asymmetry sets in on both sides

of the wall.

Figure 7.2: C and CP violating interactions with the bubble wall result in different transmission
and reflection rates of the quarks. Sphaleron processes couple to ¢, and — as in the figure — qr,.
Overall, a production of baryons over antibaryons is induced in attempts to reestablish a chemical
equilibrium between the two in the symmetric phase. This in turn generates an overall net baryon
number. The sphaleron process in this figure is simplified such as to produce AB = AL =1 for

the sake of clarity. Adapted from Ref. [30].

!Essentially, a case of quantum mechanical transmission and reflection off a potential barrier.

Quantum transport aspects of EWBG are discussed in Ref. [27].
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7.1. Outline of the mechanism

Effects of the non-equilibrium conditions

Ahead of the wall, sphalerons still have free rein to carry out baryon number vi-
olating transitions. As before, processes resulting in both positive and negative
baryonic numbers will take place. However, due to the prevalence of antibaryons
in the symmetric phase, sphalerons are biased into the production of baryons in
an attempt to reestablish a local chemical equilibrium. Thus, the CP asymmetry
ahead of the bubble is reprocessed into a net positive baryon number (Fig. . As
the bubbles expand and their walls sweep the plasma, these newly formed baryons
are transmitted into the phase of broken symmetry, where sphaleron suppression
increases as the temperature drops further (Fig. . The phase transition proceeds
to permeate the universe as the bubbles keep on expanding and coalescing.

This stage is critical to EWBG on two accounts. On the one hand, bubble ex-
pansion needs to proceed at a rate high enough that the EW broken phase spread
throughout the entire universe, yet low enough that baryon number violating pro-
cesses have time to generate the asymmetry. On the other hand, the baryon number
absorbed into the bubbles is only conserved as long as the sphaleron rate in this
phase is low enough at the moment of the phase transition. Both assumptions are
non-trivial; the former is beyond the scope of this work and treated in some detail

in Ref. [27] 75|, while the latter constitutes the essence of this work.

Figure 7.3: The net positive baryon number generated by sphalerons in the symmetric phase is
absorbed by the expanding bubble. Adapted from Ref. |30].
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CHAPTER 7. ELECTROWEAK BARYOGENESIS

7.2 Sphaleron decoupling condition

b

As suggested by the rate I'{ )

of sphaleron processes claimed in Chapter sphalerons
are subject to a severe Boltzmann suppression in the phase of broken symmetry.
With a vanishing sphaleron activity, the baryon number entering the bubbles should
thus be preserved. However, it can still succumb to total washout if the suppression is
insufficient around the time of bubble nucleation. In a model with ¢ baryonic degrees

of freedonﬂ, the baryon number density ng inside the bubbles evolves according to

[56]

dnB(t)
T —cluns(t). (7.1)
For the sake of illustration, I')), = 'Y, (T'(t)) and T = T'(t) will first be assumed

constant. Then, for a phase transition between the initial and final times ¢; and ¢y,

the fraction of net baryon number density remaining at ¢; scales as [27]

Z]Z((IZ; ~ exp[ — ¢ - const. - exp(—S(T)/T)} (7.2)

on account of I'), ~ exp(=&(T)/T) in Eq. (5.24). The washout factor (7.2)) is thus

extremely sensitive to the sphaleron energy: if too low, sphaleron processes are not
suppressed enough and much of the asymmetry will be erased by the end of the

phase transition. More formally, Eq. (7.1]) implies

ZB;((?)) = exp{—c/t. ' dt I’é’ph} : (7.3)

(3

Washout avoidance is attained if the left-hand side of Eq. remains of order
one, which implies a similar order of magnitude for the term in parentheses on the
right-hand side [27]. A more formal approach refers back to the Hubble expansion
rate (6.22). For ¢ty = oo, T; = T'(t;) and T(t;) = 0, and the scale factors a; = a(t;)
and ay = a(ty), Eq. can be recast af [122]

np(ty) s daTY(a)
: —exp{—c/ai o H() } (7.4)

dr Ty (7)
= exp{—c/o ?W} (7.5)

2¢ ~ 13N /2 with Np the number of generations is thermodynamically motivated [106} [122].

3And, again, assuming that a(¢(T)) - T = const. for adiabaticity.
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In this form, the requirement that the right-hand side remain of order one roughly
translates to [30, [122]
Fb

sph

(1) < oH(T3) (7.6)

where a ~ 0.1 captures the effects of the integral in Eq. (7.5). Eq. (7.6 is the
seminal baryon washout avoidance criterion [122]. It can be interpreted as sphalerons
decoupling from the remaining processes in the universe and is therefore also known

as the sphaleron decoupling condition |145]. With the definitions of F’S’ph in Eq. (5.24)
and H in Eq. (6.22)), Eq. (7.6) can be shown to require [122]

E(T3) ( W ) <4ﬂv(ﬂ)>
— >1 2-/\/-r-/\/’ro])ro— +71
T, TR\ @y ) T T

T; 1 Wzg* Qw
-1 — -1 41 — 1 —1
og(MPl) 5 og( 90 )+ og(4ﬂ> + logk — log v,

with the constants introduced in Chapters[sland [7.I]and the temperature-dependent
Higgs vacuum expectation value (h(T)) = v(T). Numerical evaluatior] of Eq. (7.7)

renders the condition [122]

(7.7)

£(T3)

T; T;
> (359 —42.8) + 710g2)

T, %100GeV

(7.8)

with an uncertainty sourced by the range 10~* < x < 107! assumed for the sphaleron
fluctuation determinant x. Eq. marks the condition for a sufficiently abrupt
decoupling of the sphaleron processes. In EWBG, it defines the notion of a strong
first-order phase transition (SFOPhT). Models not satisfying the criterion do not
qualify for EWBG; this renders Eq. a decisive criterion. Its evaluation is a
central aspect of this work. To this aim, it will be conveniently reexpressed: the

quantity [153]

aef €(T7) u(T;) T;
= - 71 1 .
o; T 7log T + OglOOGeV (7.9)
will be a measure of the sphaleron decoupling required to satisfy
o; > (35.9 — 42.8) (7.10)

in order to mark it as sufficiently abrupt, with the upper (lower) bound correspond-
ing to the upper (lower) bound on . In later chapters, ([7.10) will be referred to as
the o-criterion. As in Eq. (7.2), the importance of £(T")/T to sphaleron decoupling

4The values of the constants can be inferred from Appendix
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is stressed yet again, given that it dominates the behaviour of o compared to the
remaining logarithmic dependences.
Resting on the SM-inspired scaling law of the sphaleron energy with the Higgs
VEV given by [154]
ey~ &5 (7.11)

Vo

the condition for sufficient sphaleron decoupling can be recast as [122]

/U(Z—D U(E) E 19]. . 47TUO/92
0.973 —1.16) +0.1901 —-0.027log——— | - | ——=
T, <( ) +0.190log =, °8100 Gev & ’
(7.12)
i.e. as a condition on the order parameter of the phase transition
def U<Ti)
P = 7.13
&% 7 (713)
It is typically simplified to the order-of-magnitude estimate [75]
&zl (7.14)

on account of the magnitude of the right-hand side termﬂ in Eq. (7.12). Some

references suggest the range [91]
&> (1.0 - 1.3) (7.15)

as the onset for SFOPhTs, where the upper (lower) bound is induced by the upper
(lower) bound on . Condition , henceforth the &-criterion, has come to pre-
vail in the literature in view of its numerical convenience; instead, the o-criterion
has for the most part been relegated to selected papers for specialists (e.g. Refs.
[122, 145} {153} 155, 156]). Another front on which evaluation of the phase transition
strength has historically been simplified is the onset of the phase transition ¢; and
the corresponding temperature T}, at which Egs. and need to be evalu-
ated. Since T, is easier to handle numerically than 7;,, it has been far more widely
employed, to the point where most reviews of EWBG, such as Refs. |27} |75], largely
omit any mention of 7T;,. While this omission may be well justified when T}, ~ T, a
physically strict treatment requires the evaluation at T,. Finallyﬂ, Ref. |157] reports
problems of gauge dependence in standard treatments of quantities like T; and —

especially — v;, which in turn implicate both o; and &;.

®As noted in Chapter |§|, T; ~ O(10%) GeV is assumed.
6 Although crucial, this issue is beyond the scope of the present work.
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7.3 Status of electroweak baryogenesis

The success of EWBG banks as much on the viability of each subprocess outlined in
section[7.]as on their overall harmonization. In the status quo of the SM, the theory
is quick to run into problems. First of all, and as pointed out in the introduction, it
has been noted that the amount of CP violation provided by known sources (most
notably the CKM matrix) is largely insufficient to explain the observed baryon
asymmetry [57H60]. Secondly, as discussed in section [7.2, EWBG only works in
case of a SFOPhT. However, the decoupling condition is known to place a modest
upper limit on the Higgs quartic coupling and thus on the Higgs boson mass in SM
perturbative and lattice calculations alike [61-65, [126]. As of the boson’s discovery,
vanilla EWBG in the SM has become a dead end [15§].

Despite these drawbacks, EWBG still remains an attractive explanation to the
BAU. Interest persists as the shortcomings of the SM become more and more glaring.
As it stands, the SM fails to deliver on certain areas besides the BAU [1H5, [7H10].
Some of these issues, such as the hierarchy problem and even DMIZl, closely tie in
with the EW sector [11H13} [159]. As the scientific community persists in its efforts
to tackle these issues, the question arises of whether some exotic model is able to
provide a comprehensive solution. Revisiting EWBG thus becomes mandatory. One
of the many aspects which merit review in BSM scenarios is condition for a
SFOPOT, which — despite an uneven assessment across a range of different models
— prevails as a “golden rule” in studies of EWBG. The present work aims to shed
some light on the reliability of condition , derived under SM assumptions on
the scaling law and the order of magnitude of the sphaleron-related constants
in Eq. , in two BSM scenarios featuring extended scalar sectors.

"Obviously, its relevance to EW physics depends on the specifics of the DM candidate.
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Chapter 8

Constructing the effective potential

The one-loop, thermal effective potential, briefly hinted at in Chapter [3] constitutes
an integral aspect of the analyses and results presented in Part [[TI] of this work.
The essence of its character is largely determined by model-specific features, which
are therefore treated in detail throughout Chapters [I0]and [II] The present chapter
aims to showcase the general principles, structures and implementations applied

throughout Part [[T1}

8.1 Coleman-Weinberg potential

The Coleman-Weinberg (CW)|) potential used in this work is obtained in Landau
gauge from dimensional regularization in the modified minimal subtraction (MS)
on-shell renormalization scheme at a scale p = v &~ 246.22 GeV. It reads [91}, [160]

Vow(®) & = Z(—n%inimz‘w){ In (M) - cz} . (8.1)

, p?

The sum runs over all the particles ¢ appearing in the model. Their spins s;, degrees
of freedom n; and renormalization constants C; are specific to each species and are
indicated respectively in Table[S.1] The masses m; are mostly model-dependent and
will be addressed in in Chapters [L0] and [11]

By using Eq. , one tacitly drops the infinities inherent to loop calculations, as
they are removed by the renormalization scheme. Nonetheless, it will be necessary
to introduce a finite counterterm potential Vir to fully settle the renormalization
[91]. The coefficients of the counterterm potential can be fixed through specific
renormalization conditions. In general, they will be chosen such as to keep the tree-
level minima and masses intact. Further details can be inferred from the respective

model-building sections in Chapters [10] and [L1]

49



8.2. Thermal one-loop corrections

Table 8.1: Specifications for the spins s;, the degrees of freedom n; and renormalizations
constants C; appearing in the CW and one-loop thermal potentials of the models featured
in this work. Fields marked with the subscript £ correspond to longitudinal components;

those with 7, to transverse ones. Values adapted from Refs. [149, (156].

Species S; n; C;
Quarks /21 12 | 3/2
Charged leptons | 1/2 | 4 | 3/2
Neutral scalars 0 1 |3/2
Charged scalars 0 2 3/2
Goldstones 0 | 1x3|3/2
Wz 1 2 |3/2
Wi 1 4 |1/2
Zr 1| 1 |32
Zr 1| 2 |12
YT 1 2 0

YL 1 1 0

8.2 Thermal one-loop corrections

In order to track phase transitions, Chapter |3| suggested to account for thermal ef-

fects. The dominant contributions are provided by the thermal one-loop corrections

Vit(¢;T) « (27;)2 ZniJB,F <m%(2¢)> : (8.2)

with a sum over ¢ sweeping the particle content, where

o) & / dz 2o (1 F V7 (8.3)
0

are the thermal functions for bosons and fermions, respectively [97]. Various ap-

proximation schemes can handle the numerically cumbersome integrals. In the

high-temperature range defined as |z| < 1 for z & m2/T2, the expansions [161]

I T 3 1 T
Jp(x) =~ T + 2%~ gxg — §$2 In (a—b> (8.4)
Tt w? 1 x
Jp(z) ~ —— 4+ —a 4+ —a?In [ — 8.5
Fe)~ =gt gt T gt n(af) (8:5)

with a, = 1672 exp(3/2 — 2vg) and ay = 72 exp(3/2 — 2yg) are justified and widely
employed in the literature. Another approach, developed in Ref. [162], consists in

an expansion of the J-functions in terms of Bessel functions of the second kind,

JB.F( = Hm F Z z) . (8.6)

r=1
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This approach has been shown to provide a highly reliable approximation over a
wide range of temperatures for as low as N = 5 [160]. For the present work, this

was the chosen implementation.

8.3 Thermal resummation

Thermal dependence in FTFT prompts a competition between the temperature and
the mass scales which needs to be tracked. A careful revision of the leading-order
diagrams will reveal the breakdown of the one-loop perturbative expansion at high
temperatures and the need for a scheme that fixes this conduct. A standard, real
¢*-theory[!| with a mass parameter p? > 0 and self-coupling A will serve to showcase
this rather general issue (cf. Refs. [91} 95, [161]). Its self-energy diagrams induce
temperature-dependent corrections to the mass parameter term of the potential
[163),

— 1 = —pg = —p* +T(T). (8.7)

The exact temperature dependence of I1(7T") is determined by the superficial degree
of divergence D of the diagranrﬂ. II(T) will scale at least linearly with 7" on account
of the prescription for loop integrals in FTFT (Appendix [B] Eq. ) However,
with D > 0 and in absence of infrared divergences in loops associated to bosonic
propagators, II(T") will scale as AT'P for the generic, so-called “hard thermal loop”
[161]. The crucial quantities to assessing the validity of the perturbative expansion

are A and
def ATQ

As long as a, A\ < 1, the expansion is well-behaved. However, in high-temperature

(8.8)

scenarios, the occurrence of symmetry restoration brought about by a vanishing of
p2e suggests that hard loops will typically reach the scale of p? and thus o ~ 1.
At this stage, neglecting higher-order loop diagrams like those in Fig. becomes

untenable, as they will constitute leading contributions to the effective potential.

Li.e. the tree-level potential Viyee(¢) = —3p2¢? + 1A¢? is assumed.
2D = D-#loops—2-#Gp — #Gr, where D is the number of space-time dimensions and #loops

and #Gp, p are the number of loops and gauge boson/fermion propagators in the diagram [79].
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-~ 3 _
! A )\T2 ! ) ‘l/ S~ )\QTTOZW’ 1

Figure 8.1: On the left, the hard thermal loop goes like AT to leading order. On the right,
n loops were added on top of it. Close to symmetry restoration one has o ~ 1, which means
such daisy diagrams are not just unsuppressed but might constitute leading contributions to the

self-energy. Adapted from Refs. [91] [127].

Different prescriptions exist in order to deal with such thermal misbehaviour of
the theory. The widely used (truncated /El full dressing scheme proposes the generic

replacement

m; (¢) = m;(¢) + IL(T) (8.9)

for all field-dependent masses entering the effective potential via Egs. and
[164], [165]. This standard procedure amounts to a resummation of all modes
in Eq. and comes at the cost of irregularly blending the ultraviolet and
IR dynamics of the system [166]. In order to avoid such inconsistencies, Ref. |167]
instead suggests restricting the thermal treatment to the bosonic zero modes in
loops, i.e. the massless modes corresponding to n = 0 in Eq. . This approach
comes with its own problems, as its consistency relies on the steady assumption that

m?/T? < 1, which may not hold throughout parameter scans of a model [161].

8.4 Thermal Debye masses

Self-energy corrections are specific to each model as they depend on the available
couplings. For this reason, all of the thermal Debye masses will be indicated in
Chapters [L0] and Some general statements are in order, however. For a scalar ¢
sourcing a thermal potential (8.2)), the corrections can be captured by [141] [161]

PV T)

My(T) ~ — 5 (8.10)

3Truncated because the cumbersome integral expressions for II;(T) are usually replaced by

leading order approximations, as detailed in the next section |96} [161].
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with V! evaluated at the zero-temperature masses. To leading order in x in the
expansions and , the corrections become field-independent. Fermions and
gauge bosons also acquire thermal mass corrections. As the former are largely
negligible for the present work, only the corrections to the boson masses will be
accounted for. It is worth pointing out that the transverse modes do not obtain

such corrections, being shielded by custodial symmetry |168§].

8.5 Full thermal effective potential

In summary, there exist two a priori inequivalent implementations of the effective
potential. For the case of one field dimension, the standard truncated full dressing

procedure yields [161]

‘/eff (¢7 T) = ‘/tree <¢> + VCW ((b) + VCT (¢> + ‘/1th (¢7 T) (811)

with the replacement m?(¢) — m?(¢) = m?(¢)+11;(T) everywhere. The alternative

treatment keeps the zero temperature masses throughout Vow and V™ and delivers

Vet (63 T) = Viree (9) + Vow () + Ver (0) + VI (6 T) + Vauisy (:T) . (8.12)

where

Vi (65) 2 S [ (3206, 7))F — (m2(6)) ] (513)

takes care of the daisy resummation [161].
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Chapter 9

Numerical methods

Model implementation in line with Chapter [§]is followed by essentially threefold nu-
merical efforts. First, suitable model parameters need to be found. The theoretical
and experimental screening criteria are model-dependent and thus treated in Chap-
ters [10[ and Successful parameter sets are then passed onto CosmoTransitions),
which returns information on the viability and the character of phase transitions
in the model. This output is finally fed into a relaxation algorithm which allows
to solve the sphaleron equations — and thus to calculate its energy — both at zero
and finite temperature. A brief description of the numerical methods is provided

hereinafter.

9.1 CosmoTransitions

Finding solutions to the bounce equation is a challenging task: whereas quasi-
analytical methods like the overshoot/undershoot method may find a satisfactory
numerical implementation in one field dimension (see e.g. Refs. [169, [170]), the
scope of the problem increases dramatically with the number of fields. The package
CosmoTransitions makes use of a path deformation method which by contrast re-
mains stable in higher field dimensions |[171]. It takes advantage of the fact that, in
N field dimensions, Eq. can be decomposed into a parallel and a perpendicular
component along the bounce path between the vacua in field space. More precisely:
in N field dimensions, one has ¢(y) = (¢1(y), ..., on(y)) for some parametrization
y = y(p). Then, the bounce equation can be reexpressed as

d?y edy 0
2 odp oy PW) (9.1)
o (j—i) V. V() (9.2
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with e = D — 1 or € = D — 2 depending on the thermal scenario. The algorithm
initializes a straight bounce path and solves the one-dimensional via shooting.
It then checks whether the solution satisfies Eq. . If not, it iteratively deforms
the path and reevaluates the equations until a solution to both is obtained. In
this manner, CosmoTransitions is able to provide the bounce action as well as the
nucleation temperature 7,, and vacuum expectation values (¢(y))n = (Vin, .., Unn)-
The corresponding and more trivially accessible critical quantities T, and (¢(y)). =
(V1¢, ..., UN ) are provided as well.

The analysis carried out with the package for the present work relies on two
implementations of the code accessible at [172] (for the analysis in Ref. [148]) and

[173] (implemented for Ref. [174]).

9.2 Relaxation algorithm

The system of equations of the sphaleron falls under the category of so-
called boundary value problems, for which a wide variety of solvers exist in con-
ventional computational software. They usually correspond to implementations of
two classes of methods: “shooting” and collocation |170]. However, these standard
solvers quickly reach their limits when confronted to the sphaleron equations. Most
solutions are plagued by divergences towards vanishing radii; and, as one attempts
to increase the domain of interest, these methods quickly meet their doom. De-
pending on the solver, implementing different types of boundary conditions can be
a challenge in itself. It is therefore crucial to develop a method that takes care of the
boundary conditions and of potentially large domains of interest. At the same time,
the chosen method needs to remain stable as the number of fields increases. The
relaxation method was found to meet all of these needs, and the study of sphalerons
has in fact seen successful implementations thereof in the past (see e.g. Refs. |145]
155, [156]). In the following, the implementation suggested by Ref. [169] and used
for this work is presented.

Higher order ordinary differential equations and coupled systems thereof can

typically be recast as systems of N first-order differential equations

j_g = g[l‘, y] ) <93)
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where y = y(x) is the N-dimensional state vector of the system evaluated at the
point x. Computational methods generally profit from this feature, and finite-
difference methods like the relaxation algorithm take Eq. as a starting point.
These methods then proceed by discretizing the domain of the independent variable
x into a finite mesh of M points z;. In general, there is no unique discretization
prescription [169]. However, a typical approach calculates the derivative of y on the

interval (xp_1, x| as
dyr _ Ye — Y1
~ 3
dz T — Th1

with y, oo y(x,); the right-hand side of Eq. 1 is in turn evaluated at the midpoint
of the interval. At every interior point zy, Eq. (9.3 is thus ideally rendered

1

1
Y — Y1 — (T — Tp—1) ¢ |:§<5Uk + Tg-1), §(yk +Yr—1)| =0n. (9.5)

(9.4)

The finite difference relates two adjacent mesh points and two state vectors in
a system of N algebraic equations at every interior xj. Solutions to Eq. are
found as sets of y, that optimally satisfy Eq. all over the mesh.

The method is initialized with an educated guess of the solution, which is trans-
lated into a set of initial y; throughout the mesh. This choice will in general not
satisfy the equality in Eq. and lead to the N-dimensional deviation

1 1

Dy(yr, Yr-1) = Yr — Ye1 — (T — Tp-1) g 5(9% + Tp-1), §(yk + Y1) (9.6)

for each interior x;. The boundary equations at £ = 1 and kK = M instead have a
special form: they are manually set to fix the boundary conditions. To this aim, the

ni-dimensional Dy at the boundary z; is made to meet

D1<y1) = B(«Tl,yl) = 0y, (9-7)

for some algebraic relation B involving x; and y;. Similarly, at z,, and with ny =

N — ny, the no-dimensional D), is set such that
Dy(ym) = Clzum, yu) = Op, - (9.8)

For M meshpoints and a system (9.3) of N equations, the full vectors

Y1 D, (y:)

def DQ(ylu Y2)

g ® | ad D@ (9.9)

Ynm Dy (yar)
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are (M - N)-dimensional. The system is solved when a g is found such that
D(y) = 0j,.n. Educated initializations of g will minimize the components of D
from the start. However, a scheme is needed which provides information on how to
vary each component of g in order to better render the solution. One such scheme
is provided by the multivariate Newton-Raphson method for root-finding, which
iteratively improves g until D(y) = 0, within a chosen degree of tolerance.

Newton’s method assumes a linear perturbation of the system, i.e. y — y+ Ay.
Under this perturbation, finding a solution to the system of equations means
finding Ay such that

D(y +Ay) =On.y - (9.10)

The left-hand side can be expanded to first order in the perturbation as
D(y+Ay)~D(y)+S-Ay, (9.11)

where S is a (M N x M N)-dimensional Jacobian matrix which encodes in its struc-
ture the coupling between adjacent state vectors (Appendix . Under this expan-
sion, the original system of differential equations is finally reduced to an algebraic

linear system of equations for Ay,
S-Ay=-D(g). (9.12)

Solving Eq. (9.12)) is a straightforward task for conventional computational software.
Upon obtaining Ag for some iteration (i), the perturbation is added to the original

state vector in order to seed the next iteration, i.e.
gt = g9 4 AgD (9.13)

Starting from Eq. (9.5), the entire process is reiterated until, ideally, D) (g)) =0
for some iteration (i'). In practice, a convergence criterion has to be introduced,

such as

1 M-N
(%)
7=1

for some convergence parameter ¢. The corresponding 4 provides the solution to

Eq. (9.3) on the mesh.

The code developed for this work builds on the preexisting Mathematica im-

1 M-N
(@)
<c or —M N ; ’ij

plementation of Ref. |175], in turn inspired by a Matlab version developed for the
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work in Ref. [176]. One aspect of the code which shall not remain uncommented
is the imposition of boundary conditions on the interval [0,00]. It is possible to
compactify the solution domain by an appropriate reparametrization of the inde-
pendent variable; thus, the boundary conditions on Egs. at infinity can be re-
stated in computationally accessible terms. However, under such typically non-linear
reparametrizations, the uniformity of the mesh is lost. This becomes problematic
upon interpolation and integration of the mesh solutions, as linear interpolations can
become too rough and higher order interpolations are found to introduce unphysical
artifacts. The issue may be averted by choosing a high enough mesh density — at
the cost of drastical increases in the computational complexity, with S scaling as
O(M?). As a compromise solution, all sphaleron equations in this work are solved on
finite, uniformly discretized domains. The appropriateness of this approach relies on
a fast convergence of the solutions; in the case of Eqs. , this is well supported
by Fig. An overall sanity check was carried out by calculating the sphaleron
energy in the tree-level SM at different values of A/g3 and comparing the results to
benchmarks in Ref. [55]. As Fig. shows, results slightly depend on the length
Emax Of the solution domain as well as on the mesh density. Maximal discrepancies
of ~ 6% are noted for values of \/g? at which the relaxation method is particularly

ill-behaved on account of numerical effects.

g >
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— 2
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g 8 .
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13 e ' B &nax=100, 1000 points
- @ .
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' . @® Benchmarks
1
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Ag?

Figure 9.1: Sphaleron energies in the tree-level SM for different values of A\/g5. The red mark-
ers represent the benchmark points of Ref. [55]. The red lines mark the energy at \/g3 ~ 0.3,

approximately the tree-level SM value |122]. Missing points did not converge.
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Chapter 10

Inert Doublet Model

An important class of natural BSM scenarios is provided by multi-doublet exten-
sions of the Higgs sector. The simplest such scenario is the inert doublet model,
which consists of just one additional exotic SU(2); doublet both decoupled from
the fermions and presenting a vanishing VEV at zero temperature [174]. Just like
the two-Higgs doublet model — its more general counterpart —, the IDM
possesses a number of features which render it an attractive model to study. Part
of the allure lies in the additional scalars and pseudoscalars it supplies, which have
been touted as dark matter candidates. Furthermore, the inertness of the
second doublet largely enforces standard EW physics at zero temperature, thus rec-
onciling known phenomenology with the landscape of possibilities arising at high
energies. As pertains to this work, the model crucially presents non-trivial phase
transition dynamics and thus a wide playground for EWBG. As recent studies have
shown, the realization of both a correct DM relic abundance and a strong first-order
EWPHT is highly constrained but still feasible within selected regions of parameter
space 127, (149, (174, [177H181|. Tt thus becomes imperative that the condition for
a SFOPOT be revisited as a means of refining the search for viable sets of model

parameters.

10.1 The model

This chapter contemplates the EW Lagrangian

IDM def ~SM
LEW = ‘Ckin

+ (D, ®2) (D ®y) — Vig(Py, o) . (10.1)

SM
+ Ly
1

=0

The structure of (10.1)) is fundamentally SM-like: £3M and £5M, are the SM kinetic
and Yukawa terms seized from Chapter [2| each featuring the SM-like Higgs doublet
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®,. Additionally, the IDM counts a second SU(2); doublet ®5. In both standard
notation (cf. Refs. [149} 160]) and unitary gauge, the doublets are expressed as

B ¢+ B H+
= <<h+z’¢>/ﬂ> P2 <<H+zA>/ﬂ> ’ (102)

with the standard Higgs boson h, the new scalars H, H*, the Goldstone bosons ¢,
¢* and the pseudo-scalar A. The proposed tree-level potential consists of two SM-

inspired sectors to which interaction terms between the Higgs doublets are added

[149],

Viree (@1, @2) =413 @1[* + 13| P + M |@[F + Ao| Do
20 |2 e 12 L 5 TRY (103)
—|—>\3|(I)1| |(I)2| —|—>\4|q)1q)2| —{—? |:(q)1q)2> +hC:| .

Both h and H are treated as dynamic degrees of freedom which eventually attain
their VEVs (h) = v; = viw and (H) = vy = 0. All other fields are assumed to
vanish when evaluated at the vacuum. Correspondingly, the tree-level potential in

terms of its degrees of freedom boils down to

2 2 >\ >\
Vig(h, H) :%hQ v %m + St S
Ay

) PR, As
2hiH -
+4h +4(

hH)* + = E(hH)Q + h.c.] . 1o

2

Unlike general 2HDM scenarios, the IDM imposes a discrete Z, symmetry under
which alone @, is odd. Under this symmetry, the lightest Z,-odd particle is rendered
stable and thus a DM candidate. Furthermore, the couplings will all be real, and so

this model on its own provides no new source of CP violation [149, |174].

10.2 Construction of the effective potential

The analysis featured in this chapter is motivated by the recent results of Refs.
[127,149]. In order to build on them, the model was set up by closely adapting the
prescriptions laid out therein. The present section outlines the shared construction

of the effective potential and the parameter constraints implemented throughout.
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10.2.1 Parametrization

First of all, the quartic couplings A3, Ay and A5 will be absorbed into |149)

Aas = As 4 A+ As (10.5)

N def

)\345 = )\3 + )\4 — )\5 = /\345 — 2)\5 . (106)
Secondly, the masses of the new particles associated to the Higgs doublets will be
used as input parameters for the analysis. At tree-level, the scalar and pseudoscalar
mass matrices, evaluated in the unitary gauge at the EW minimum (h, H) = (v, 0),

present the mass-square eigenvalues

1
m? = 2\ 02 m? = 5(2/@ + Agy50?) (10.7)
1
mie =0 mhye = 5(2/13 + A3v?) (10.8)
1 _

Consequently, the quartic couplings A3, Ay and A5 can be completely removed via

m2,. —m? m% 4+ m?2, — 2m? m?, — m?
Ay =gy + 22—\ = A HE g = —L——2 (10.10)
v v v
In summary, the model admits a parameter transformation
{,LLl, M2, A17 A27 A37 A47 A5} — {U7 )\2’ )\3457 Mmp, My, M=, mA} (]‘011)

with fixed v ~ 246 GeV and my, ~ 125 GeV which will be exploited hereinafter.

10.2.2 Zero-temperature, field-dependent masses

The full, one-loop effective potential is constructed in line with the prescriptions
of Chapter |8l The zero-temperature, one-loop corrections are provided by the CW
potential , which features a dependence on the field-dependent masses of the
model. Fermion masses in the IDM are inherited from the SM, as fermions com-
pletely decouple from the second doublet. The mass squares are thus

2

Yr

m# (h, H) = 5

h?. (10.12)
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This analysis restricts the fermion content to the top quark ¢. The zero-temperature

mass squares of the gauge bosons v, W= and Z in turn are [149]

m? (h,H) =0 (10.13)
2

m2, (h, H) = %(fﬂ + H?) (10.14)
2 2

m (h, H) = & 192 (W + H?). (10.15)

The model is complemented by the masses of the different scalars and pseudoscalars.

Their field-dependent mass matricedl] are given as [149)

3\ h? — \jo? + 2315 2 hH\
2 _ 1 1 2 345
./\/ls (h, H) hH)\345 3)\2H2 + %)\345h2 + M% (10.16)
Mh? — M\v? + g H? hH\
2 _ 1 1 5/\345 L A5
M, (h, H) hH s Ao H? 4 $Xs4sh? + 113 (10.17)
Mh?— o2 + s H? ThH(M\ + As5)
2 _ 1 1 513 5 4 5
M. (b H) LhH (M + As) NoH? + Igh? 4 42 (10.18)

Their diagonalization delivers the field-dependent mass squares at zero temperature,

which coincide with the mass squares (10.7]) — (10.9) when evaluated at the vacuum.

10.2.3 Counterterm potential

Renormalization is completed by introducing the counterterm potential |149)
Ver (hy H) = Spih?® + 6u3 H? + 6\ h* (10.19)

Its coefficients are fixed by a set of renormalization conditions chosen such as to
preserve the zero-temperature EW vacuum and the tree-level masses m;, and my
after the CW corrections have been accounted for. It is pointed out that such renor-
malization schemes are often challenging: second and higher order derivatives of the
Goldstone contributions to the CW potential are dangerously ill-defined at the
vacuum. A strict treatment of such pathological terms requires the introduction
of IR cutoffs. Refs. [182, [183] provide a systematic procedure for renormalization

conditions featuring up to second order derivatives, which was successfully applied

ls: scalars — p: pseudoscalars — c: charged scalars.
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to the recent analyses of Refs. [149, [160] and therefore also followed here. Its renor-

malization conditions impose

(9VCT(h, H) L 8VCW(h, H)

Oh Ooh

vev

(10.20)

0*Ver(h, H) ;_<8QI~/CW(h,H) 1 Zn.(amg(h,h{))?1 m§R>

2 2 2 n 2
oh oh 3217 £, oh 0

vev

(10.21)

0*Ver(h, H)
OH?

277 2 2 2
OH? 327r2:¢ -, oh Q2

(10.22)
Notably, the scheme requires the CW potential Vew on the right-hand side of Egs.
and to be evaluated without its Goldstone modes. The latter are
added by hand, modulated by the logarithm of an IR cutoff set to m?; = m? at the
vacuum. In return for curing the IR illness of the counterterm scheme, and as Ref.
[149] points out, this set of conditions leaves the masses m g+ as loop-corrected
parameters, while the couplings Ay and A345 in turn become running quantities. A

refined and simultaneously IR divergence-free renormalization is left for future work.

10.2.4 Thermal mass corrections

The Debye masses of the scalars and pseudoscalars emerge as eigenvalues of the

thermal mass matrices
M (h, H,T) = M (h, H) + T1(T) (10.23)

with ¢ = {s, p, ¢}. For all three matrices, the components of II (7") are given by
[149), [160]

3 9 T?
I, (T) = (Gyf + §g§ + §g§ + 12X\ +4A3 + 2/\4) o (10.24)
3, 9, T2
]._.[22 (T) =\ z9; + D + 12/\2 + 4)\3 + 2)\4 - (1025)
2 2 24
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The thermal self-energies of the gauge boson modes are

5. (T) = TG (T) = 29272 I, (T) =115 (T) =0 (10.27)
1% (T) = 2¢37T* ML (T)=0 (10.28)

Thus, the mass square of the longitudinal W boson modes becomes
g2
Mys (hy H,T) = (0% + H?) + 25T (10.29)
L

For the longitudinal photon and Z boson modes, the thermal corrections deliver

1
M e (0 H,T) = 291+ 65) (0 + H?) + (g7 + )T £ A (10.30)
with
1
A% = 2 (gf + ) (WP + H + 8T — gl T* (0" + H? + 4T”). (10.31)

The thermal mass corrections will be applied in line with the standard truncated
full dressing procedure of Eq. (8.11f), since — as noted by Ref. [149] — the high-
temperature assumption for the alternative treatment may not hold in the region

studied. The full thermal effective potential is thus
Vit (hy H; T) = Vigeo (hy H) + Vow (hy H) 4+ Vor (h, H) + V™ (h, H;T),  (10.32)

with the replacement m?(h, H) — m2(h, H) = m2(h, H) + IL;(T) in Vow and V.

10.3 Constraints on the model parameters

As has been pointed out, Refs. [127, |149] have highlighted specific regions of pa-
rameter space. Within these, it is possible to account for both a SFOPhT as well
as a correct DM relic abundance. The present work aims to shed some light on
these regions in the hopes of refining the search for viable parameter sets. This goal
has motivated all parameter choices of the later analysis; the ranges considered are
showcased in Table [10.1. The last parameter appearing in the table is the mass
splitting, defined as

Am E ma e —my . (10.33)

The mass splitting has been shown to be a convenient input parameter in studies
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Table 10.1: Parameter space used throughout this chapter, on the basis of Refs. [127] [149).
The upper bounds on mg+ and m4 follow from the bound considered for Am, which was chosen
such as to generously cover the regions explored by the mentioned references while remaining well
within the EW scale. The lower bound on myg+ is motivated by reassessments of LEP data with
regards to new physics [149), |184H186|. The same analyses also exclude the intersection of regions

myg > 100GeVUmy —mpyg < 8GeV.

Parameter space
Ao A345 mpg [GeV] my[GeV] mpy+ [GeV] Am[GeV]
<10 [-0.01,0.01] [55, 75] < 675 (70, 675] < 600

of the EWPIT, as it allows to easily cover heterogeneous phase transition regimes
(see e.g. Refs. |127] 149, 160, (174} [187]). The underlying assumption when using
Am throughout this work is m 4 = my+, which is very restrictive. Nonetheless, Am
will be a useful asset.

Parameter selections within the ranges considered were examined for a number
of theoretical and experimental constraints outlined in the following (cf. Refs. [127,

149]).

10.3.1 Theoretical constraints

Boundedness and vacuum stability
Firstly, in order to ensure a charge-conserving ground state,
Ay — A5 <0 (10.34)

is required. Furthermore, as the behaviour of the potential at large field values is
dictated by its quartic terms, stability is enforced by restricting their parameters

such that [149, |181]

)\1,)\2 > 0, Ag > —24/ )\1/\2, A3+ As — |)\5| > =24/ A1\ (1035)

Perturbative unitarity

Perturbative unitarity is imposed on the S matrix for all processes involving scalars.

This requires all of its eigenvalues to satisfy
w| < 8. (10.36)
Details on the S matrix can be inferred from Appendix [H|and Ref. |181].
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10.3.2 Experimental constraints

Suppression of exotic gauge boson decays

In conformity with Refs. [149] [181], decays of the gauge bosons into H, H* or A

shall be kinematically excluded by requiring

ma +mg+ > myy+ myg + mg+ > M+ (10.37)

ma+mg > my 2mpg+t > my. (10.38)

Suppression of exotic Higgs decays
In the SM, the total Higgs decay width is estimated as [188]

DM = 4.07 MeVT39% . (10.39)

Exotic and so far unobserved decays of the Higgs h into the new state H should
widen T5M by [127, [149]
) A2 2 2
rinv _ Z35ThWE g 4<@) . (10.40)
8mgsmy, my,
The invisible decay width '™ is restricted by upper limits on the branching ratio

inv
Binv dﬁf Fh
h =7 pSM inv
Y+ 1

claimed independently by the ATLAS and CMS collaborations at 95% confidence

(10.41)

level [189, 190]. Parameter sets in this analysis were required to meet the limit

B < 0.26 of the former.

Oblique parameters S, T and U

Overall, in order to satisfy experimental bounds, the effects of exotic physics on
EW precision observables need to be small [191]. This is quantified by the Peskin-
Takeuchi observables (e.g. Ref. [192]). Parameter sets making it into the final anal-
ysis all satisfy the bounds [191]

S =0.06 £ 0.09 (10.42)

T = 0.10 £ 0.07 (10.43)

with the fit constraint U = 0. The parametrizations of S and T can be found in

Appendix
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10.4 Construction of the electroweak sphaleron
The generic two-doublet case presents the energy functional [153], 193]
a 1 a aij %
EIWS, &y, Py = /d?’:z; [ZWMW 11 (D;®) (D'®y) + AVE(D, Do) |, (10.44)

with a,7,7 = 1,2,3 and £ = 1,2. In order to evaluate the energy with respect to
the absolute vacuum of the theory at temperature 7', and thus in agreement with

the implicit normalization of Eq. (5.3)), the quantity

def

AVE(®y, ®y) = Veg(Py, @y, T) — Vig(®1, o, T)

€

(10.45)

‘ vev

is introduced. Furthermore, in order to impose a radial gauge condition, spherical
coordinates are favored anew. This motivates the use of a standard radial coordinate

r, which can be made dimensionless via

£ 0rQ with Q% (/o2 +02, (10.46)

the quantities vy = vy (7)) and vy = v2(T") being the temperature-dependent VEVs of
the fields h and H. Following Chapter 5[ and the derivation for the general 2HDM
case in Ref. [153], the spherically symmetric field ansatz

Dy (£,0,0; 1) = ha (&) @7 (0, 65 1) + (1 — ha(€)) % (e ) ) (10.47)

“cos
We (€,0,0;1) =0 (10.49)
Wo (£,0,¢; 1) = f(§) W™ (0, ¢; 1) (10.50)
W (€0, ;1) = [(E) W™ (6, ¢; ) (10.51)

is used, where the loop &> is defined according to Eq. (5.12)) with the loop parameter
p € [0,7]. The fields h and H

def def

h(§) = v hi(§) H(&) = vz ha(8) (10.52)

are thus treated as the sole dynamical fields, while all other fields in the doublets

are consistently set to zero. For p = 7/2, and omitting the {-dependences for the
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sake of clarity, the ansatz delivers the energy functional

Q [ 9
s =50 [ a(3) o0 SiE ()

£ w3 (dh 2 ¢
+2;’222<d;) (“lfﬂ thQ)( I+ oAV (hl,hg)}.

(10.53)

In conformity with Eq. (10.45), the quantity AV.%(hy, hs) is to be understood as
A‘/;g(hl, hg) = ‘/eﬁ‘(vl hl, V2 hg, T) — ‘/eﬂ(’Ul, V2, T) . (1054)

The radial functions f, hy and hy need to satisfy

lim /(€) = lim () = 0 lim ha(€) = 0 (10.55)
lim 7€) = Jim hy(€) =1 Jim ha(€) = 1. (10.56)

The static equations for the generic two-doublet case are obtained as

2, 0°f
=== - (pment+ hen) - a-g) s
0 [ ,0h & 0
a_g ( Qa_gl) = 2h (1 — f)2+ 208 Ol ——AVL(hy, hy) (10.58)
Ohy\ 52 0
% (g2 ag) = 2hy(1 — f)? + 7208 s —— AV E(hy, ha). (10.59)

However, a special scenario arises whenever one of the doublets is evaluated at (®;) =
0 and thus v; = 0. In such cases, the kinetic terms in Eq. (10.53) corresponding
to the degree of freedom of the doublet ¢; all vanish, which reduces the system of

equations to

9 f 1
Eog == N0-2) - 1€ 1-) (1060

0 (.,0h\ S
a_g < 2a_§> = Qhk(l —f)Q + 2 4ahkA‘/eﬁ<hk,O) (1061)

for k € {1,2}, k # [. The boundary conditions for the remaining radial functions
correspond to ((10.55)) — (10.56)).
The sphaleron energy is obtained by evaluating Eq. ([10.53)) at the solutions f,

hy and hs to the static equations. Furthermore, as long as no mixed kinetic Higgs
terms appear in the Lagrangian, U(1) corrections to the sphaleron energy are easily
accounted for in generic multi-Higgs-doublet scenarios: each doublet gives rise to a

term ([5.22)). For any inert doublets, such terms automatically result in zero.
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10.5 Investigation of the decoupling criteria

10.5.1 Selection of benchmark points

Ref. [149] reports the dominance of a one-step phase transition pattern which has the
doublet @5 remain inert throughout the entire process, i.e. it presents a zero VEV in
both EW phases at all temperatures. This pattern features first- and second-order
processes alike, of which only the former will be of interest. Selected benchmark
points ) displaying such FOPhT are kept in Table for future reference.
Furthermore, Ref. |149| crucially remarks the existence of narrow but well-defined re-
gions of parameter space allowing for two-step phase transitions, with a first instance
of symmetry breaking solely along the axis of the second Higgs field. Although a
study of the transition strength in such cases should be interesting, the tentative
scans of parameter space carried out with CosmoTransitions did not find suitable
two-step phase transitions. It is pointed out that comprehensive scans of the space
spanned by Table are beyond the scope of this work; nonetheless, the scan
setup was chosen such as to accurately resolve the narrow regions in question — to
no avail. Accordingly, the following analysis of the sphaleron decoupling criterion is

restricted to the one-step pattern available.

Table 10.2: BMPs used for a first characterization of the sphaleron.

BMP1 BMP2 BMP3

PT pattern 1-step 1-step 1-step

my [GeV] 65 70 55
m4 [GeV] 340 364 400
mis [GeV] 340 364 400
Ay 0.0025 | 0.0025 | 1.5000
Asis 0.0050 | —0.0050 | —0.0030

& [GeV] | 9055.01 | 9080.05 | 9073.80
T,[GeV] | 106.41| 99.85| 81.99
v [GeV] | 187.78 | 20349 | 22858
&, [GeV] | 6477.03 | 7167.86 | 8138.50
T.[GeV] | 111.23| 104.95| 95.11
v1.[GeV] | 16851 | 188.79 | 211.44
£.1GeV] | 5726.6 | 6326.90 | 7404.13
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10.5.2 Characterization of the sphaleron

The BMPs of Table provided first insights into the sphaleron. To this aim,
the sphaleron solutions to Eqgs. — were obtained with the relaxation
algorithm introduced in Chapter [0] Resting on the phase transition pattern consid-
ered, the sphaleron solutions for the gauge and standard Higgs fields showcased in
Fig. exhibit the physiognomy and convergence behaviour known from Chapter
In addition, the figure also displays the effects of temperature on the sphaleron:
whereas the continuous lines correspond to the sphaleron solution at zero tempera-
ture, the dotted lines showcase solutions obtained at the respective T,,, which were
obtained with CosmoTransitions. One observes that the lower 7}, and T" altogether,
the higher the radial field profile. This explains the contrast between the upper and
lower rows of the figure. In the case of BMP3, the phase transition occurs at a tem-
perature about 20 GeV below those of BMP1 and BMP2, which results in nucleation

curves that closer resemble the zero-temperature profiles.
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Figure 10.1: Exemplary sphaleron curves for the BMPs in Table m The continuous lines
correspond to the zero-temperature solutions of Eqs. (10.60)—(10.61), whereas the dotted lines

were obtained at the respective nucleation temperatures.
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This trend is symptomatic of a general temperature dependence which acts, in
particular, through the temperature-dependent VEV v;(T). The sphaleron charac-
ter and its energy are ultimately pinned down by the evolution of v (7"), as showcased

by Fig. [10.2] The sphaleron energies £(T') were calculated from Eqs. (10.53)) and
(5.22)) on the basis of solutions to Egs. (10.60)—(10.61]) obtained at the corresponding

temperature. The thermal evolution of v;(7") was tracked with CosmoTransitions.
The inertness of @, in Eq. on account of v5(7T") = 0 is stressed again for later
reference. The left-hand side plots hint at the close relation of £(T") and v;(T), for
which the evolution is displayed from the critical temperature all the way down to
zero temperature. This behaviour is the consequence of an approximate scaling law
for v1(T) as given by Eq. (7.11). In view of the right-hand side plots of Fig. [10.2]
the validity of the scaling law is suggested for these BMPs. The proportionality is

not exact; however, it does coincide well for the BMPs displayed.
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Figure 10.2: LEFT: Temperature-dependent evolution of the normalized vacuum expectation
values and sphaleron energies for BMP1 and BMP3 in Table [10.2] RiGHT: Scaling of the U(1)-
corrected E(T') with v1(T). Cyan (green) points were obtained at T), (T¢).
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10.5.3 SFOPKTs and sphaleron decoupling in the IDM

The preliminary case study of BMPs 1 and 3 suggests the validity of the approximate
scaling law for v1(T) in the IDM. This is the essential ingredient in reducing
the unwieldy o-criterion to a more convenient condition on the order parameter
¢ = vi(T)/T for the transition pattern considered. Given the modest additional
structure of the IDM and the inertness of the second doublet in this process, the
canonical ¢ 2 1 should be safe. It is noted that in the derivation of this criterion,
the only free scale featured in Eq. aside from v; and 7} is that of £(0). As can
be inferred from Table for the selected BMPs this scale is of 9 TeV and thus
tallies with that of Esy(0) as suggested in the literature (see e.g. Ref. [30]) and Fig.
[9.1] For this reason, a criterion £ > O(1) can be expected.

Nonetheless, this work sets out to optimize this criterion by comparing and con-
trasting it to the seminal o-criterion . A non-trivial assumption that underlies
the following analysis concerns the sphaleron-related parameters which appear in
Eq. and define the range of the o-criterion. The SM values of Appendixwill
be assumed for them, since — to the knowledge of the author — their calculation in
exotic models is largely missing to this day. Relying on the modest extension that
the IDM constitutes, the large bounds chosen for « and the sub-leading logarithmic
impact of these parameters on Eq. (7.7)), this work follows Refs. [122] [153] [155] in
assuming that the canonical o-criterion should remain reliable.

The first part of this analysis proceeded as an extension of the BMP case study:
in order to track £, BMPs 1 and 3 of Table were used as seeds for two one-
dimensio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>